

AFRL-IF-RS-TR-2003-212
Final Technical Report
September 2003

CONFIGURING EMBEDDABLE ADAPTIVE
COMPUTING SYSTEMS FOR MULTIPLE
APPLICATION DOMAINS WITH MINIMAL SIZE,
WEIGHT, AND POWER

Texas Tech University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. F297, J468

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2003-212 has been reviewed and is approved for publication.

APPROVED: /s/
 JULES BERGMANN
 Project Engineer

 FOR THE DIRECTOR: /s/
 EUGENE C. BLACKBURN, Chief
 Information Technology Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
SEPTEMBER 2003

3. REPORT TYPE AND DATES COVERED
Final Jul 97 – Oct 01

4. TITLE AND SUBTITLE
CONFIGURING EMBEDDABLE ADAPTIVE COMPUTING SYSTEMS FOR
MULTIPLE APPLICATION DOMAINS WITH MINIMAL SIZE, WEIGHT, AND
POWER

6. AUTHOR(S)
John K. Antonio

5. FUNDING NUMBERS
C - F30602-97-2-0297
PE - 62301E
PR - D002
TA - 02
WU - P6

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Texas Tech University
203 Holden Hall
Lubbock TX 79409-1035

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFTC
3701 North Fairfax Drive 26 Electronic Parkway
Arlington Virginia 22203-1714 Rome New York 13441-4514

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-212

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Jules P. Bergmann/IFTC/(315) 330-2244/ Jules.Bergmann@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The advantages of using DSP chips for high-performance embedded signal processing applications have been
demonstrated during the past decade. However, it is now apparent that even DSP chips can be overkill for some
computations found in common embedded military applications. This project investigates the advantages of integrating
configurable hardware together with a multiprocessor DSP/GPP platform. The computational engine of the configurable
hardware used in this project was comprised of FPGA chips. A primary goal of our project was to demonstrate that for
given computational loads--associated with instances of embedded radar signal processing applications—the total size,
weight, and power (SWAP) could be reduced by integrating FPGA-based components as part of the embedded
computational platform.

15. NUMBER OF PAGES
142

14. SUBJECT TERMS
Digital Signal Processing, Hybrid Computer Architecture, Embedded Systems, Field Programmable
Gate Arrays, Radar Signal Processing Size, Weight, and Power Optimization 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

Table of Contents

Introduction .. 1
Organizational Structure of the Report .. 1
Project Overview .. 2
Brief Descriptions of Major Parts of the Report .. 3

Part 1: Optimal Multiprocessor Configuration for SAR .. 5
Overview of References [1A], [2B], and [3].. 5

Part 2: Optimal Communication Scheduling for STAP ... 9
Overview of References [4C], [5D], [6E], [7], and [8] .. 9

Part 3: FPGA Power Prediction and Applications ... 12
3.1 FPGA Power Prediction ... 12
Overview of References [9F] and [10] .. 12
Overview of Reference [11G]... 14
3.2 FPGA Applications .. 14
Overview of References [12H] and [13] .. 14
Overview of Reference [14] ... 15
Overview of Reference [15I] .. 16
Overview of References [16J] and [17] ... 18

Part 4: Hybrid FPGA/DSP/GPP Platform .. 19
Overview of Reference [18K] ... 19

Conclusion.. 33
Technology Transfer... 33
Deliverables.. 33

References .. 35
Additional Materials... 38
Technical Report .. 38
Appendix A: Jeffrey T. Muehring and John K. Antonio, “Optimal Configuration of an Embedded Parallel
System for Synthetic Aperture Radar Processing,” Proceedings of the International Conference on Signal
Processing Applications & Technology, Boston, MA, Oct. 1996, pp. 1489-1494....................................... 40
Appendix B: Jeffrey T. Muehring and John K. Antonio, “Optimal Configuration of Compute Nodes for
Synthetic Aperture Radar Processing,” Proceedings of the International Workshop on Embedded HPC
Systems and Applications (EHPC ‘98), in Lecture Notes in Computer Science 1388: Parallel and
Distributed Processing, edited by Jose Rolim, sponsor: IEEE Computer Society, Orlando, FL, USA, Apr.
1998, pp. 987-993. ... 47
Appendix C: Jack M. West and John K. Antonio, “Simulation of the Communication Time for a Space-
Time Adaptive Processing Algorithm on a Parallel Embedded System,” Proceedings of the International
Workshop on Embedded HPC Systems and Applications (EHPC ‘98), in Lecture Notes in Computer
Science 1388: Parallel and Distributed Processing, edited by Jose Rolim, sponsor: IEEE Computer
Society, Orlando, FL, USA, Apr. 1998, pp. 979-986... 55
Appendix D: Jack M. West and John K. Antonio, “A Genetic Algorithm Approach to Scheduling
Communications for a Class of Parallel Space-Time Adaptive Processing Algorithms,” Proceedings of the
5th International Workshop on Embedded/Distributed HPC Systems and Applications (EHPC 2000), in
Lecture Notes in Computer Science, IPDPS 2000 Workshops, sponsor: IEEE Computer Society, Cancun,
Mexico, May 2000, pp. 855-861. ... 64
Appendix E: Jack M. West and John K. Antonio, “A Genetic-Algorithm Approach to Scheduling
Communications for Embedded Parallel Space-Time Adaptive Processing Algorithms,” Journal of Parallel
and Distributed Computing, Vol. 62, No. 9, Sept. 2002, pp. 1386-1406... 72
Appendix F: Timothy Osmulski, Jeffrey T. Muehring, Brian Veale, Jack M. West, Hongping Li, Sirirut
Vanichayobon, Seok-Hyun Ko, John K. Antonio, and Sudarshan K. Dhall, “A Probabilistic Power
Prediction Tool for the Xilinx 4000-Series FPGA,” Proceedings of the 5th International Workshop on

ii

Embedded/Distributed HPC Systems and Applications (EHPC 2000), in Lecture Notes in Computer
Science, IPDPS 2000 Workshops, sponsor: IEEE Computer Society, Cancun, Mexico, May 2000, pp. 776-
783.. 94
Appendix G: Hongping Li, John K. Antonio, and Sudarshan K. Dhall, “Fast and Precise Power Prediction
for Combinational Circuits,” Proceedings of the IEEE Symposium on VLSI, sponsor: IEEE, Tampa, FL,
Feb 2003, pp. 254-259. .. 103
Appendix H: Nikhil D. Gupta, John K. Antonio, and Jack M. West, “Reconfigurable Computing for Space-
Time Adaptive Processing” Proceedings of the Sixth Annual IEEE Symposium on Field Programmable
Custom Computing Machines (FCCM), Napa, CA, USA, Apr. 1998, pp. 335-336. 110
Appendix I: Jeffrey T. Muehring and John K. Antonio, “Minimizing Power Consumption using Signal
Activity Transformations for Very Deep FPGA Pipelines,” Proceedings of the Military and Aerospace
Applications for Programmable Devices and Technologies Conference (MAPLD 2000), sponsors: NASA
and Johns Hopkins University/Applied Physics Laboratory, Laurel, MD, Sep. 2000. 113
Appendix J: S. Vanichayobon, Sudarshan K. Dhall, S. Lakshmivarahan, and John K. Antonio, “Power-
speed Trade-off in Parallel Prefix Circuits,” Proceedings of ITComm 2002, High-Performance Pervasive
Computing Conference, sponsor: SPIE, Boston, MA, July/Aug. 2002, pp. 109-120. 117
Appendix K: Jack M. West, Hongping Li, Sirirut Vanichayobon, Jeffrey T. Muehring, John K. Antonio,
and Sudarshan K. Dhall, “A Hybrid FPGA/DSP/GPP Prototype Architecture for SAR and STAP,”
Proceedings of the Fourth Annual High Performance Embedded Computing Workshop, sponsors: U.S.
Navy and Defense Advanced Research Projects Agency (DARPA), MIT Lincoln Laboratory Publications,
Group 18, Lexington, MA, Sep. 2000, pp. 29-30. ... 130

iii

List of Figures

Figure 1. Organizational structure of the report. .. 1
Figure 2. This diagram illustrates the method of performing sectioned fast convolutions

on azimuth input data with a pre-stored kernel. Given that the kernel size is fixed,
then if the section size is made large, a relatively small fraction of samples are
discarded for each section, thus making processor efficiency high. Conversely, if the
section size is small, then a relatively large fraction of samples must be discarded for
each section, resulting in poor processor efficiency, but relatively small memory
requirements. .. 6

Figure 3. Optimal CN Configurations of the CN-constrained Model [2B]. 8
Figure 4. Measured power consumption of the configuration files and data sets from [9F].

.. 14
Figure 5. Structure of the deep pipeline.. 17
Figure 6. Using activity transformations to minimize power consumption. 18
Figure 7. Block diagram of the FPGA/DSP/GPP prototype architecture........................ 20
Figure 8. Detail of the FPGA/DSP/GPP prototype architecture....................................... 21
Figure 9. Photograph of the FPGA/DSP/GPP prototype architecture. 22
Figure 10. Interface Design: Communication from Annapolis FPGA (F) to Mercury. ... 23
Figure 11. Interface Design: Communication from Mercury to Annapolis FPGA (B). ... 24
Figure 12. Illustration of how the major computational components of SAR processing

can be mapped onto the hybrid system. ... 24
Figure 13. Illustration of how the major computational components of STAP processing

can be mapped onto the hybrid system. ... 25
Figure 14. Figure 14. SAR Processing Flow. ... 25
Figure 15. Data distribution for Parallel SAR Processing on Mercury. 26
Figure 16. Space-time diagram for streaming parallel SAR processing........................... 27
Figure 17. Throughput requirements achieved for streaming parallel SAR processing... 28
Figure 18. Streaming parallel RT_STAP on Mercury Subsystem.................................... 29
Figure 19. Parallel RT_STAP on Mercury Subsystem... 30
Figure 20. Space-time diagram for parallel RT_STAP. ... 31
Figure 21. Throughput requirements achieved for the medium case parallel RT_STAP. 32

iv

Acknowledgments

I would first like to acknowledge and thank the graduate students that worked on this
project. Every publication associated with the project was co-authored with one or more
graduate assistants and was based on research conducted in conjunction with a PhD
dissertation or MS thesis.

Jeff Muehring (initially an MS student and later a PhD student) conducted research in
the area of determining optimal configurations for SAR (synthetic aperture radar)
processing. His work included the application of mathematical programming techniques
for determining optimal multiprocessor configurations for SAR. His techniques centered
on the concept of making the proper trade-off between processing hardware and memory
so as to minimize the overall power consumption of the system, while satisfying
throughput requirements. Jeff also made contributions in the domain of FPGA (field
programmable gate array) design by proposing a new way of implementing two-
dimensional signal processing tasks (including SAR) using very deep FPGA pipelines. In
addition, Jeff played an important role in designing and implementing the hardware
portions of the custom interfaces between the FPGA and DSP/GPP subsystems of the
constructed prototype platform.

Jack West (initially an MS student and later a PhD student) conducted research in the
area of minimizing communication time for STAP (space-time adaptive processing)
executing on a multiprocessor. By minimizing communication overhead, he
demonstrated that less hardware is required for given instances of STAP, thereby
reducing SWAP (size, weight, and power). The first phase of Jack’s work included the
development of a simulator for Mercury’s RACEway® interconnection network. This
fast and efficient simulator was used in the second phase of his work in which genetic
algorithm approaches were developed for solving the communication scheduling
problem. Jack also played important roles in developing the prototype system by helping
with the STAP application software implementation and by designing and implementing
the software portions of the custom interfaces connecting the FPGA and DSP/GPP
subsystems.

Tim Osmulski (MS student) developed and implemented an analytical tool, in
software, for estimating power consumption of a configured FPGA chip. This tool,
which was the first of its kind, demonstrated that it is indeed possible to accurately
predict FPGA power consumption by applying existing analytical approaches. The
accuracy of Tim’s tool was verified by comparing its predicted values with actual
measured power consumption taken from an instrumented FPGA board.

Hongping Li (PhD student) developed a new analytical approach for estimating power
consumption of circuits, including those implemented on a FPGA. His approach is based
on a Markov chain signal model, and directly accounts for correlations present among the
internal signals of the circuit. Hongping verified the accuracy of his approach using
PSpice® based simulation studies. Hongping also lead the effort in implementing the
parallel SAR application software on the multiprocessor system.

Nikhil Gupta (MS student) developed FPGA circuit designs to support core
calculations required by STAP. His work demonstrated that 16-bit block floating point

v

arithmetic provides acceptable accuracy for many situations. The advantage of using
block floating point arithmetic, instead of standard floating point, is the significant
reduction in the size and power consumption of the corresponding circuits. His research
illustrated that if the values of the input data are approximately uniformly distributed,
then the block floating point approach delivers acceptable accuracy.

Brian Veale (initially an MS student and later a PhD student) conducted a study
comparing different FPGA designs and implementations for an inner product co-
processor. He studied two architectural approaches for the co-processor and two different
types of arithmetic (integer and floating point) for a total of four combinations. For each
implementation, he also studied the effect that employing different degrees of pipelining
had on each design in terms of size, speed, and power consumption. His study of
pipelining resulted in some counterintuitive results. In particular, while it is well known
that increasing the degree of pipelining generally enables custom designs to be run at
faster clock rates, the same is not always true for FPGA designs.

Sirirut Vanichayobon (PhD student) studied the power-speed trade-off for a class of
circuits known as prefix circuits. These circuits are important in their own right, and are
representative of the type of circuit often required in high-performance embedded
applications. Through extensive analysis of a number of known prefix circuits, her work
illustrates that the trade-off between power and speed is not always obvious to the circuit
designer. Based on discoveries made through her research, some important guidelines for
properly matching circuit characteristics with power and speed requirements are
provided. Sirirut also lead the effort in implementing the parallel STAP application
software on the multiprocessor system.

I would also like to acknowledge the work and contributions of faculty colleagues. Dr.
Sudarshan Dhall served as co-PI on this project since the Fall of 1999; the time at which I
became Director of Computer Science at the University of Oklahoma. Dr. Dhall made
contributions in nearly all aspects of the project, and was particularly instrumental in
guiding the research of graduate assistants Sirirut Vanichayobon and Hongping Li. Dr.
Dhall’s expertise in system modeling – and probabilistic techniques in particular – was
extremely valuable. The project also benefited greatly by the contributions of Dr. S.
Lakshmivarahan. It was Dr. Lakshmivarahan that originally proposed the topic of
Sirirut’s research, and he and Dr. Dhall served as co-advisors of her PhD committee.

Next, I would like to acknowledge the assistance and guidance of key defense
personnel, starting with Rick Metzger of Rome Laboratory. Rick served as program
manager for a related prior project I performed for Rome Laboratory, and it was this past
work experience that enabled me to be successful in proposing and completing the
present project for DARPA.

I would like to acknowledge the support and encouragement of José Muñoz, who
served as the original program manager for DARPA’s ACS (Adaptive Computing
Systems) program. José provided valuable feedback and perspective throughout the
contract period. I had the opportunity to meet with José and his staff frequently, including
at annual reviews, PI meetings, and other professional conferences. He actively
encouraged and facilitated interaction and collaboration among the PIs of different

vi

projects, which ensured that the ACS program was cohesive and integrated. The
interactions with other PIs was stimulating, and served to accelerate and improve the
quality and relevance of the results delivered by all project PIs.

Assisting José Muñoz with the management of this project was Ralph Kohler of Rome
Laboratory. I met with Ralph on a regular basis at meetings and conferences and
communicated with him frequently through e-mail and telephone correspondence. Ralph
made a number of technical contributions and refinements to the project, and often served
as a sounding board on behalf of the military. He related to me the actual needs of the
war fighter, and these insights helped us to provide results that were more applicable than
would have otherwise been possible. Ralph also helped me tremendously with the overall
management and organization of the project.

Finally, I would like to thank Jules Bergmann of Rome Laboratory, who had the
unenviable task of encouraging me to complete and submit this final report. Jules was
most gracious and professional; he gently, but persistently, encouraged me to finish this
report. I would not want to think when this report would have been delivered without the
interaction and encouragement provided by Jules.

 1

Introduction

Organizational Structure of the Report

A challenge in organizing this report was to provide sufficient detail to readers that desire
it, while also providing a relatively high-level summary of the entire project. Published
materials that resulted from this project currently include eleven conference/journal
papers, two PhD dissertations, and five MS theses. The eleven published papers are
included in printed form in the appendices of this report. It was natural to include copies
of the papers in printed form and refer readers interested in further details to the
dissertations and theses (which are available online) because the papers were generally
derived from the dissertations and theses. It was infeasible to incorporate the
dissertations and theses in printed form; there are over 800 pages associated with these
documents. The report is organized hierarchically, as illustrated in Figure 1.

Final Report

Introduction Part 2

Part 4

Conclusion

Appendix B

Appendix A

Appendix E

Appendix D

Appendix C

Appendix H

Appendix G

Appendix F

Appendix J

Appendix I

Appendix K

References

Thesis Dissertation

Thesis

Dissertation Thesis

Thesis Thesis

Ph
D

 D
is

se
rta

tio
ns

an

d
M

S
Th

es
es

C
on

fe
re

nc
e

an
d

Jo
ur

na
l P

ub
lic

at
io

ns
Su

m
m

ar
y

of

B
as

ic
 R

es
ul

ts

Summaries Presentations PostersReports

A
dd

iti
on

al
M

at
er

ia
ls

In
cl

ud
ed

 in
 P

rin
te

d
Fo

rm
A

va
ila

bl
e

O
nl

in
e

Part 1

Part 3

Figure 1. Organizational structure of the report.

2

The main body of the report provides a summary of basic results, and includes four
major parts: (1) Optimal Multiprocessor Configuration for SAR; (2) Optimal
Communication Scheduling for STAP; (3) FPGA Power Prediction and Applications;
and (4) Hybrid FPGA/DSP/GPP Platform. Each of these parts is supported by a
collection of published papers, theses, and dissertations produced during the project
period. Copies of the published papers are included in the appendices of the report.
References to these publications are labeled with a number followed by the letter of the
appendix where a copy of the publication can be found. For example, reference label
[1A] indicates that a copy of the referenced publication can be found in Appendix A. Due
to size considerations, copies of theses and dissertations, such as reference [3], are not
included in an appendix; however, online links for all references are provided in the list
of references. For conference papers, links to the associated presentation materials are
also provided within the list of references. As illustrated in Figure 1, additional materials
are also available online, including annual project summaries, technical reports, and
presentations and posters given at conferences and PI (principal investigator) meetings.
Online links to additional materials are provided in the section entitled Additional
Materials, which follows the References section.

Each major part is divided into subsections, and each subsection provides an overview
of one or more published papers. Overviews of some of the conference papers (e.g.,
[15I] and [18K]) actually expand upon the publication by including content from the
presentation materials associated with that publication. Readers not needing the level of
detail found in these overviews are encouraged to first read the Acknowledgments
section, which includes a paragraph on the work conducted by each student assistant. Of
course readers requiring more detail are encouraged to pursue copies of the papers found
in the appendices, online links of presentation materials found in the References section,
and/or the online links found in the Additional Materials section.

Project Overview

The advantages of using digital signal processing (DSP) chips for high-performance
embedded signal processing applications have been demonstrated during the past decade.
DSP chips often win over general purpose processors (GPPs) because their complexity
(measured, for example, in terms of silicon area, number of transistors, or power
consumption) is better matched to the highly regular and numerical-intensive
computations required by many signal processing based embedded applications.
However, it is now apparent that even DSP chips can be overkill for some computations
found in common embedded military applications. That is, in some cases DSP chips are
equipped with much more architectural complexity than is actually needed, resulting in
inefficiencies and greater power consumption than absolutely necessary.

In this project, we investigated the advantages of integrating configurable hardware
together with a multiprocessor DSP/GPP platform. The computational engine of the
configurable hardware used in this project was comprised of FPGA chips. A primary goal
of our project was to demonstrate that for given computational loads – associated with
instances of embedded radar signal processing applications – the total size, weight, and

3

power (SWAP) could be reduced by integrating FPGA-based components as part of the
embedded computational platform.

Reconfigurable computing devices, such as FPGAs, can offer a cost-effective and
more flexible alternative than the use of application specific integrated circuits (ASICs).
FPGAs are especially cost-effective compared to ASICs when only a small number of the
chip(s) are required. Another major advantage of FPGAs over ASICs is that they can be
reconfigured to change their functionality while still resident in the system, which allows
hardware designs to be changed similar to software, and dynamically reconfigured to
perform different functions at different times.

A number of theoretical and empirical studies were conducted during the project
period to understand and demonstrate the advantages and disadvantages of DSP/GPP
versus FPGA technologies with respect to SWAP. A prototype heterogeneous
FPGA/DSP/GPP-based platform was constructed using commercial off-the-shelf (COTS)
components to demonstrate the utility of a hybrid system containing all three types of
technologies. A number of systematic approaches and tools based on mathematical
programming and modeling were developed to optimally configure FPGA/DSP/GPP-
based platforms for applications in the radar signal-processing domain. The two major
applications considered were SAR (synthetic aperture radar) and STAP (space-time
adaptive processing).

The prototype system was constructed using COTS components from two vendors:
Annapolis Micro Systems, Inc. and Mercury Computer Systems, Inc. We had excellent
support from both companies, and we designed and implemented a custom interface to
allow communication between two disparate product lines of these vendors.
Implementation of a custom interface was necessary because at that time (1997-98) there
were few interfacing standards among vendors such as the two we were working with
and little customer demand (excluding us, of course!) for providing such an interface.
The availability of products and support to more easily interface components from
different vendors, including the two we worked with, is much better today. In fact, the
output of our research, which illustrated the potential benefits of a hybrid
FPGA/DSP/GPP platform, served as a catalyst for these industry sectors to invest
significant resources and provide support and standards appropriate for interfacing their
product lines.

Brief Descriptions of Major Parts of the Report

Part 1: Optimal Multiprocessor Configuration for SAR – describes research for
determining optimal multiprocessor configurations for instances of the SAR processing
problem. The research was targeted at how to optimally configure a multiprocessor
system for given instances of the SAR problem so that the resulting power consumption
of the multiprocessor system is minimized. The key to the approach involved making the
proper trade-off between the number of processors and amount of memory associated
with the multiprocessor configuration. References associated with this work are [1A],
[2B], and [3].

4

Part 2: Optimal Communication Scheduling for STAP – describes research for
determining how to best schedule inter-processor communications of a parallel STAP
algorithm mapped onto a Mercury Race Multiprocessor. The approach is based on a
genetic algorithm, and the research also resulted in the development of a fast and
accurate network simulator for the RACEway® interconnection network. References
associated with this work are [4C], [5D], [6E], [7], and [8].

Part 3: FPGA Power Prediction and Applications – describes mathematical models and
other approaches developed for predicting power consumption for FPGA circuits. We
found that predicting power consumption for FPGAs was particularly difficult, as it
strongly depends on precisely how the chip is configured and the “activity”
characteristics of the input data being processed. Nevertheless, we generated new and
important results and tools in this area. We also demonstrated the utility of using FPGA
circuits for portions of the SAR and STAP applications. References associated with this
work are [9F], [10], [11G], [12H], [13], [14], [15I], [16J], and [17].

Part 4: Hybrid FPGA/DSP/GPP Platform – describes a prototype hybrid platform that
was constructed for this project. It includes the detailed design and development of the
custom interfaces implemented to interconnect the disparate products of the two vendors.
Some performance results are also included. The reference associated with this work is
[18K].

5

Part 1: Optimal Multiprocessor Configuration for SAR

Overview of References [1A], [2B], and [3]

The real-time embedded application considered in this part, i.e., SAR, as well as many
others of military interest, are characterized by a common theme: processing a continuous
stream of data collected from radar sensors. The rate at which data samples flow from the
sensor(s) to the computational platform is typically very high – often on the order of tens
or hundreds of millions of samples per second and even higher. Furthermore, the number
of calculations to be performed on each sample is typically at least 100 FLOPs (floating-
point operations), which amounts to an overall computational throughput requirement
ranging from at least one to ten billion FLOPs (and often much higher).

At the beginning of the contract period, approaches capable of providing a
computational platform that could achieve these types of computational throughput rates
typically involved a “pipeline of interconnected processors” style of architecture. Such an
approach could be a valid and effective architecture in some cases. However, situations
often arose in which the throughput requirements dictated that 100 or more SHARC® (or
similar) DSP processors were required. In many situations, the associated level of power
requirement for the computational platform alone posed a severe problem, because of the
strict power budgets available on UAVs (unmanned aerial vehicles) and satellites where
these systems are deployed.

In the paper [1A], we showed how a DSP/GPP-based multiprocessor system could be
optimally configured using two types of processor/memory daughtercards to minimize
overall power consumption for SAR applications. We showed that by careful (and often
counterintuitive) selection of parameters associated with both the hardware (the number
of daughtercards of two possible types) and the application software (a parameter known
as the azimuth section size), an optimal configuration (one with minimal power
consumption) can be derived based on the application of mathematical programming
techniques.

Our approach centered on the derivation of two mathematical formulas for given
instances of the SAR problem: one for the total numbers of processors required and the
other for the total memory required. Both of these functions are dependent on the choice
of the section size parameter. The derived functions dictate that if a small section size is
used, then the associated memory requirements are small, but the processor requirements
are high. On the other hand, a large section size was shown to result in a requirement for
fewer processors, but more memory.

The reason a large section size implies that fewer processors are required is because
only a small fraction of data is discarded during the calculation of the so-called sectioned
fast convolutions (refer to Figure 2). This implies that the processors are being used with
high efficiency when the section size is large. On the other hand, when a small section
size is used, then more processors are required because a relatively large fraction of data
is overlapped. From Figure 2, note that the overlapped data samples are actually
processed twice. Although achieving high processor efficiency is a traditional objective,
the trade-off is that implementing the associated large section sizes requires extra

6

memory, and extra memory consumes extra power. It is this inherent trade-off between
processor efficiency, memory, and section size that our approach optimized.

Kernel

Discard

Overlap
Section

FFT size

Large Overlap/Section ratio ⇒ Small azimuth memory, large number azimuth processors
Small Overlap/Section ratio ⇒ Large azimuth memory, small number azimuth processors

Figure 2. This diagram illustrates the method of performing sectioned fast convolutions
on azimuth input data with a pre-stored kernel. Given that the kernel size is
fixed, then if the section size is made large, a relatively small fraction of
samples are discarded for each section, thus making processor efficiency high.
Conversely, if the section size is small, then a relatively large fraction of
samples must be discarded for each section, resulting in poor processor
efficiency, but relatively small memory requirements.

The two daughtercards assumed to be available in our approach were: Type 1, which
had six SHARC® processors and a total of 32MB of memory; and Type 2, which had
two SHARC® processors and a total of 64MB of memory. Thus, our optimization
procedure was based on minimizing total consumed power based on proper selection of
three parameters: section size, number of Type 1 cards, and number of Type 2 cards.
Note that allowing two daughtercards in the configuration put additional constraints on
the types of configurations that were possible. Thus, in general, arbitrary numbers of
processors and amounts of memory could not me configured. However, the underlying
concept of trading the efficiency of processors for more memory was still present.

One interesting lesson learned from our study happened when we considered a
situation in which only Type 1 cards were assumed to be available for configuring the
system (recall that the Type 1 card is “processor rich” and “memory poor” as compared
with the Type 2 card). For this case of configuring only with Type 1 cards, the
optimization procedure selected very small section sizes – smaller than one would think
to be reasonable. We had to think about why this was happening; it went against our
intuition. After some thought, we realized the reason – the objective of our optimization,
afterall, was to minimize consumed power, not to maximize processor efficiency. The
mathematical programming procedure had no regard for processor efficiency; its only
concern was to use the available resources (in this case a lot of processors, and not much
memory) to minimize total consumed power. If that means inefficient use of the
processors, then so be it.

Consider why it is generally not optimal to force our expectations about what
“reasonable” processor efficiencies should be for the case discussed in the previous
paragraph. To achieve such efficiencies may require substantial memory (refer to Figure

7

2). So, if “reasonable” processor efficiencies are forced into the configuration, then the
number of cards required by the configuration must increase – not because more
processors are required, but because more memory is required. In fact, some processors
will be idle while the few “efficient ones” are working away – the resource being fully
used is the memory. Recall that consumed power is in direct proportion to the number of
cards in the configuration. This helped us understand a new interpretation for what our
optimization procedure was actually doing: piecing together the “pre-configured silicon”
cards available in the most power efficient way possible. Forget about the importance of
processor efficiencies that we study/teach in our parallel processing courses!

References [2B] and [3] further refine the results of [1A]. The most notable refinement
involves the concept of configuring a compute node. In the Mercury system, a compute
node (CN) is an entity on a daughtercard consisting of one or more compute elements
(CEs). A compute element, in this context, is a SHARC® processor. In our study, the
Type 1 cards were populated with CNs in which each CN contains 3 CEs; and the Type 2
cards were populated with CNs in which each CN contains 2 CEs. In [2B] and [3], we
defined formulations to our optimization problem in which the utilization of each CN is
determined by the optimization procedure.

Figure 3 illustrates optimal configurations for a wide range of SAR operating points.
The horizontal resolution axis represents the desired SAR image resolution in meters, and
the vertical velocity axis is the speed of the vehicle (e.g., UAV) in meters/sec. The legend
on the right side of the figure indicates two possible choices (X and Y) for CN
configurations. The value of XT and YT indicate the card Type (1 or 2) selected for the X
and Y configurations. For example, the red square symbol ‘�’ is associated with the use
of card Type 1 for the X configuration (i.e., XT = 1) and card Type 2 for the Y
configuration (i.e., YT = 2). Furthermore, for the X configuration, one CE (for each CN) is
utilized for range processing (i.e., Xr =1) and two CEs are used for azimuth processing
(i.e., Xa = 2). Similarly, for the Y configuration, none of the CEs are used for range
processing, and both CEs (for each CN) are used for azimuth processing (because Yr = 0
and Ya = 2). For the sake of comparison, consider now the configurations associated with
the blue times symbol ‘×’ where both the X and Y configurations use the Type 1 card, but
the utilization of the CNs for X and Y are distinct. The number of configured CNs, and
thus the total number of cards of each type, is also provided by the optimization
procedure, but is not shown on Figure 3.

Although subtle, perhaps, this part of the work is extremely important because it cuts
to the heart of a bigger issue. The most fundamental questions of interest for these types
of systems should not necessarily be expressed in terms of processor efficiencies, or even
processors or memories at all; what is important is the “configuration of the silicon,” i.e.,
how can it be configured to minimize SWAP. The mixing of the two card types we
studied is only a rough approximation to this general concept of “configurable silicon.”
With two discrete card types available, many, but not anywhere near all, possible
combinations of processors and memories can be configured. But remember, processors
and memory are not the only things we can build out of silicon. More specialized
functional units can also be built.

8

Parts 3 and 4 of this report deal with a key aspect of the project – namely, is it always
necessary to configure silicon as discrete processor and memory modules? Could it be
that silicon configurations consisting of modules or functional units less complex than
processors and memories are also possible, and have superior SWAP characteristics in
some situations? Before getting to the answers to these questions, the next part of this
report deals with optimizing the SWAP performance of a multiprocessor implementation
for STAP. Although Part 2 is similar to Part 1 in the sense that only processors and
memories (and not reconfigurable computing) are assumed in the computing platform,
the mechanism for minimizing SWAP in the STAP application centers around effective
use of the interconnection network that supports interprocessor communication.

0.5 1 1.5 2
50

100

150

200

250

300

350

400

Resolution

V
el

oc
ity

1 1 2
2 1 1
1 1 2 1 2 1

XT Xr Xa YTYrYa

1 1 2 2 0 1

1 2 1 2 0 2
1 3 0 2 0 2
1 3 0 2 1 1
2 0 2 2 1 1

1 1 2 2 1 1

2 1 1 2 2 0

1 1 2 2 0 2

Figure 3. Optimal CN Configurations of the CN-constrained Model [2B].

9

Part 2: Optimal Communication Scheduling for STAP

Overview of References [4C], [5D], [6E], [7], and [8]

The work here develops and evaluates a genetic-algorithm-based (GA-based)
optimization technique for the scheduling of messages for a class of parallel embedded
signal processing techniques known as space-time adaptive processing (STAP). The GA-
based optimization is performed off-line, resulting in static schedules for the compute
nodes of the parallel system. These schedules are utilized for the on-line implementation
of the parallel STAP application. The primary motivation and justification for devoting
significant off-line effort to solving the formulated scheduling problem is the resulting
reduction of hardware resources required for the actual on-line implementation. Studies
illustrate that reductions in hardware requirements of around 50% can be achieved by
employing the results of the proposed scheduling techniques. This reduction in hardware
requirement is of critical importance for STAP, which is typically an airborne application
in which the size, weight, and power consumption of the computational platform are
often severely constrained.

For an application implemented on a parallel and embedded system to achieve
required performance, it is important to effectively map the tasks of the application onto
the processors in a way that reduces the volume of inter-processor communication traffic.
It is also important to schedule the communication of the required message traffic in a
manner that minimizes network contention so as to achieve the smallest possible
communication times.

Mapping and scheduling can both – either independently or in combination – be cast
as optimization problems, and optimizing mapping and scheduling objectives can be
critical to the performance of the overall system. For embedded applications, great
importance is often placed on determining minimal hardware requirements that can
support a number of different application scenarios. This is because there are typically
tight constraints on the amount of hardware that can be accommodated within the
embedded platform. Using mappings and schedules that minimize the communication
time of parallel and embedded applications can increase the overall efficiency of the
parallel system, thus leading to reduced hardware requirements for a given set of
application scenarios.

The work here focuses on using a GA-based approach to optimize the scheduling of
messages for STAP algorithms. STAP is an adaptive signal processing method that
simultaneously combines signals received from multiple elements of an antenna array
(the spatial domain) and from multiple pulses (the temporal domain) of a coherent
processing interval. The focus of this research assumes STAP is implemented using an
element-space post-Doppler partially adaptive algorithm; refer to references [6E], [7],
and [8] for details.

STAP involves signal processing methods that operate on data collected from a set of
spatially distributed sensors over a given time interval. Signal returns are composed of
range, pulse, and antenna-element digital samples; consequently, a three-dimensional (3-
D) data cube naturally represents STAP data. A distributed memory multiprocessor

10

machine is assumed here for the parallel STAP implementation. The core processing
requirement proceeds in three distinct phases of computation, one associated with each
dimension of the STAP data cube. After each phase of processing, the data must be re-
distributed across the processors of the machine, which represents the communication
requirements of this parallel application. Thus, there are two primary phases of inter-
processor data communication required: one between the first and second phases of
processing and one between the second and third phases of processing. After all three
phases of processing are complete for a given STAP data cube, a new data cube is input
into the parallel machine for processing.

A proposed GA-based approach is used to solve the message-scheduling problem
associated with each of the two phases of inter-processor data communication. This GA-
based optimization is performed off-line, and the results of this optimization are static
schedules for the compute nodes of the parallel system. These schedules are used within
the on-line parallel STAP implementation. The results of the study show that significant
improvements in communication time performance are possible using the proposed
approach for scheduling. It is then shown that these improvements in communication
time translate to reductions in required hardware for a class of scenarios. Performance of
the mappings and schedules are evaluated based on a Mercury RACEway® network
simulator developed under this project and described in references [4C] and [7].

For this work, the STAP data cube is partitioned into sub-cube bars of vectors where
each vector is mapped onto a given CN (compute node), refer to [6E] for more details. A
two-dimensional process set, as described in [8], defines the mapping of data onto CNs
for each computational phase. Additionally, the process set defines the communication
pattern for the required “distributed corner turns” of the STAP data cube.

Summarizing the results published in [6E] and [8], it is demonstrated that off-line GA-
based message scheduling can significantly improve the communication performance in a
parallel system. When compared to baseline and randomly generated schedules, the GA-
based schedules are significantly superior – typically reducing communication times by
between 20% and 50%, see [8] for details.

Interestingly, it is shown that the best mapping – defined as a mapping that minimizes
a mapping objective function – is not always the best choice in terms of minimizing
overall communication time. In particular, as the number of CNs is increased, optimal
mappings that require only one phase of communication generally report higher overall
communication times than those good (but not optimal) mappings that require two non-
trivial phases of communication.

The optimization of mapping and scheduling, either independently or in combination,
is critical to the performance of the STAP application for embedded parallel systems. For
such systems, great significance is placed on minimizing overall execution time, which
includes both computation and communication components. Such reductions in execution
time also translate into improved hardware efficiency and thus reduced hardware
requirements, which is often critical.

Through extensive numerical studies, it is shown in [6E] and [8] that the GA-based
optimization approaches can yield mappings and schedules that greatly improve the on-

11

line performance and reduce the hardware requirements of the parallel embedded system.
Examples are provided that illustrate the optimal mapping and scheduling methodologies
of [6E] and [8] can produce hardware savings of 50% and more when compared to
typical solutions to the mapping and scheduling problems that might be employed by
practitioners. Because of limitations on the size of problems that were
executed/simulated, systems up to a size of only 32 processors were investigated.
However, from the trends observed in overall completion times, it is apparent that even
more significant savings in hardware/power requirements are realizable for STAP
applications that require substantially larger systems having hundreds or even thousands
of processors.

12

Part 3: FPGA Power Prediction and Applications

We discovered during the project period that predicting power consumption for an FPGA
is a very difficult task. There were no commercially available tools that accurately
predicted power consumption for any of the existing FPGAs. Thus, a major focus of this
part of the work involved the development of accurate methods for predicting FPGA
power consumption. References generated by this project in the area of power prediction
include [9F], [10], and [11G], which are overviewed in Section 3.1.

In addition to trying to understand and predict FPGA power consumption, we also
studied the types of computations that could be effectively mapped onto FPGAs. In
theory, given enough gates, one could imagine configuring an FPGA board to behave as
a microprocessor. Thus, again in theory, an FPGA board could be used to perform any
type of calculation. However, based on the available technology, this would be extremely
impractical. Our goal was to therefore use FPGAs to devise useful modules that are much
less complex than a microprocessor, thereby reducing the SWAP overhead inherent when
computations are performed only on microprocessors and/or DSPs. So, one of our aims
was to characterize the types of computations that can be practically implemented in
FPGAs. References produced in the area of mapping applications onto FPGAs include
[12H], [13], [14], [15I], [16J], and [17], and these are overviewed in Section 3.2.

3.1 FPGA Power Prediction

Overview of References [9F] and [10]

The work published in [9F] and [10] describes a practical and accurate power prediction
tool for the Xilinx® 4000-series FPGA. The utility of the tool is that it enables FPGA
circuit designers to evaluate the power consumption of their designs without resorting to
the laborious and expensive empirical approach of instrumenting an FPGA board/chip
and/or taking actual power consumption measurements. Preliminary evaluation of the
tool indicates that an error of less than 5% is usually achieved when compared with
actual physical measurements of power consumption.

The tool, which is implemented in Java, takes as input two files: (1) a configuration
file associated with an FPGA design and (2) a pin file that characterizes the signal
activities of the input data pins to the FPGA. The configuration file defines how each
CLB (configurable logic block) is programmed and defines signal connections among the
programmed CLBs. The configuration file is a text file that is generated using a Xilinx®
M1 Foundation Series utility called ncdread. The pin file is also a text file, but is
generated by the user. It contains a listing of pins that are associated with the input data
for the configured FPGA circuit. For each pin number listed, probabilistic parameters are
provided which characterize the signal activity for that pin.

Based on the two input files, the tool propagates the probabilistic information
associated with the pins through a model of the FPGA configuration and calculates the
activity of every internal signal associated with the configuration. The activity of an
internal signal s, denoted as, is a value between zero and one and represents the signal’s

13

relative frequency with respect to the frequency of the system clock, f. Thus, the average
frequency of signal s is given by as f.

Computing the activities of the internal signals represents the bulk of computations
performed by the tool. Given the probabilistic parameters for all input signals of a
configured CLB, the probabilistic parameters of that CLB’s output signals are determined
using a mathematical transformation. Thus, the probabilistic information for the pin
signals is transformed as it passes through the model of the configured logic, defined by
the configuration file. However, the probabilistic parameters of some CLB inputs may
not be initially known because they are not directly connected to pin signals, but instead
are connected to the output of another CLB for which the output probabilistic parameters
have not yet been computed (i.e., there is a feedback loop). For this reason, the tool
applies an iterative approach to update the values for unknown signal parameters. The
iteration process continues until convergence is reached, which means that the
determined signal parameters are consistent based on the mathematical transformation
that relates input and output signal parameter values, for every CLB.

The average power dissipation due to a signal s is modeled by ½ Cd(s)V 2as f, where
d(s) is the Manhattan distance the signal s spans across the array of CLBs, Cd(s) is the
equivalent capacitance seen by the signal s, and V is the voltage level of the FPGA
device. The overall power consumption of the configured device is the sum of the power
dissipated by all signals of the configured FPGA.

For the study conducted in [9F], a total of 70 power measurements were made using
five different configuration files and fourteen different data sets. Descriptions of these
configuration files and data sets are given in [9F]. Each of the configuration files used
take a total of 32-bits of data as input. The first three configurations (fp_mult, fp_add,
int_mult) each take two 16-bit operands on each clock cycle, and the last two (serial_fir
and parallel_fir) each take one 32-bit complex operand on each clock cycle. The 32 bits
of input data are numbered as 0 through 31, and two key parameters are used to
characterize these bits: an activity factor, a and a probability factor, p. As mentioned
earlier, the activity factor of an input bit is a value between zero and one and represents
the signal’s relative frequency with respect to the frequency of the system clock, f. The
probability factor of a bit represents the fraction of time that the bit has a value of one.

Figure 4 shows plots of the measured power for all combinations of the configuration
files and data sets considered. For all cases, the clock was run at f = 30 MHz. With the
exception of the fp_mult configuration file, the most active data set file (number 6) is
associated with the highest power consumption. Also, the least active data set file
(number 5) is associated with the lowest power consumption across all configuration
files. There is somewhat of a correlation between the number of components utilized by
each configuration and the power consumption; however, it turned out that even though
the serial_fir implementation is slightly larger than parallel_fir, it consumes less power.
This is likely due to the fact that the parallel_fir design requires a high fan-out (and thus
high routing capacitance) to drive the parallel multipliers.

In addition to the graph shown in Figure 4, additional figures are provided in [9F] that
overlay estimates of power consumption predicted by the tool developed in this project.

14

As mentioned above, predicted values of power were generally within 5% of actual
measured values.

0 2 4 6 8 10 12 14

2.0

2.5

3.0

3.5

4.0

4.5

5.0 Configure f iles:
 fp_mult
 fp_add
 int_mult
 serial_fir
 parallel_f ir

Po
we

r C
on

su
m

pt
io

n
(w

)

data sets

Figure 4. Measured power consumption of the configuration files and data sets from [9F].

Overview of Reference [11G]

The method used by the above tool to compute signal activities was based on a
previously published approach from another research group. That approach has some
difficulties, primarily related to its time complexity. In [11G], a new analytical approach
was developed by us for calculating signal activities. Our approach is based on a Markov
chain signal model, and directly accounts for correlations present among the signals. We
verified the accuracy of the approach by comparing signal activity values calculated
using our approach with corresponding values produced through simulation studies. It
was also demonstrated that the proposed approach is much more computationally
efficient than competing approaches. In addition to describing the new approach for
calculating signal activities, [11G] also provides a comprehensive review of past
approaches, including the approach implemented for the tool described in [9F] and [10].

3.2 FPGA Applications

Overview of References [12H] and [13]

In references [12H] and [13], techniques for mapping portions of space-time adaptive
processing (STAP) computations onto FPGAs are described. The output of STAP is a
weighted sum of multiple radar returns, where the weights for each return in the sum are
calculated adaptively and in real-time. The most computationally intensive portion of
most STAP approaches is the calculation of the adaptive weight values, which typically

15

constitutes over 90% of all the computations needed in adaptive processing. Calculation
of the weights involves solving a set of linear equations based on an estimate of the
covariance matrix associated with the radar return data. The traditional approach for
computing the adaptive weights is based on a direct method called QR-decomposition.
This method has a fixed computational complexity, which depends on the size of the
equation matrix and provides the exact solution. An alternative approach based on an
iterative method called Conjugate Gradient was investigated, which allows for trading off
accuracy for reduced computational complexity. The two approaches are analyzed and
compared in [13]. The results show that the Conjugate Gradient approach can reduce the
computations needed at the cost of reduced accuracy in some cases.

Existing computational strategies for STAP typically rely exclusively on the use of
multiple DSPs and/or GPPs. An alternative strategy is proposed in [12H] and [13], which
makes use of FPGAs as vector co-processors that perform inner product calculations.
Two different “inner-product co-processor” designs are introduced for use with a host
DSP or GPP. The first has a multiply-and accumulate structure and the second uses a
reduction-style tree structure having two multipliers and an adder. For a fixed clock rate,
the second design can provide a higher throughput, but requires more computation from
the host (to perform the final summation of the partial sums).

In the work of [12H] and [13], the two inner-product co-processors were implemented
using a block floating point format, which is much simpler to implement than standard
floating point units. We also investigated overall accuracy of block floating point versus
full floating point. It was demonstrated that the block floating point co-processors
produce acceptable accuracy results for input data distributions that are uniformly
distributed. Poor results are obtained, however, for cases where one or a few of the
elements are much larger than the rest of the numbers. This is because the block-floating-
point architecture normalizes all the exponents to the maximum exponent by shifting out
the least significant bits of the mantissa so that all the exponents are equal, and then all
the operations are integer arithmetic operations (based on the resulting mantissas), which
are much easier to perform than general floating-point operations. The shifting out of the
bits produces inaccuracy in the computations. For all the ranges of numbers considered,
if the numbers are uniformly distributed, then the exponent distribution has an increasing
exponential shape with a majority of the numbers close to the maximum value in the
exponent domain. This results in a small number of bits from the mantissas of the
numbers being shifted out, on the average. Another important point is that the multiply
implementation uses a 15-bit mantissa, which implies that the mantissa of the input
floating-point number is truncated to 15 bits from 23 bits, which itself introduces some
inaccuracies.

Overview of Reference [14]

In reference [14], further studies of inner-product co-processor designs were conducted.
In contrast to the inner product designs of [12H] and [13], which were based on a block
floating point format, both floating point and integer formats were used in [14], both
using 16-bit formats. The studies demonstrated that inner-product co-processors, for both

16

integer and floating-point data, could fit into current (at that time) FPGA technology and
achieve significant speed and throughput. The results of the implementations show that it
is feasible and beneficial under certain circumstances to implement floating-point and
integer operations in FPGAs (i.e., such as when a custom data format can be used, as
with the SHARC® DSP which can convert back and forth between IEEE 32-Bit floating
point and the SHARC® DSP 16-bit floating point formats).

The studies in [14] also considered the advantages and disadvantages of employing
different degrees of pipelining in the inner product designs. One interesting (and
somewhat counterintuitive) outcome related to pipelined versions of the designs was that
adding more pipeline stages did not always allow for an increased clock speed at which
the circuit could be executed. This was due to the fact that adding in the pipeline stages
also added more overall complexity, which made it more difficult for the place-and-route
routines of the FPGA design tool to find good implementations. Thus, as more pipelined
stages were added, critical signal lengths sometimes increased, dictating that the clock
rate actually had to be decreased. Estimates of power consumption were also evaluated
for all designs considered in [14].

Overview of Reference [15I]

Two major contributions are presented in [15I]. First, it is shown that the core
computations from the SAR application, including both the range compression and
azimuth processing phases, can be structured as a single deep computational pipeline that
can be implemented directly on an array of FPGAs. Past results for high-throughput SAR
processing (e.g., refer to [1A], [2B], and [3]) typically assume the computations are to be
mapped onto a distributed memory multiprocessor system in which a subset of the
available compute elements (CEs) is assigned to perform range processing and the
remaining CEs perform azimuth processing. In this type of traditional approach, a
number of processed range vectors are sent from the range CEs to the azimuth CEs where
they are buffered in memory. After a prescribed number of compressed range vectors are
present in the memory space of the azimuth CEs, azimuth processing commences on the
azimuth CEs. Because of the significant intermediate buffer storage required by this
approach, and the associated placing and fetching of data in this memory space by the
range and azimuth CEs, respectively, this type of SAR implementation is generally not
thought to be “purely streaming.” However, as is presented in [15I], these computations
(both phases) can in fact be structured as a single computational pipeline, which can be
directly mapped onto an array of FPGAs.

In the proposed approach, no intermediate memory buffer is required between the two
phases of computation. Instead, within the structure of the computational pipeline are
long segments of delay elements that effectively provide the intermediate storage
associated with the more traditional approach. Figure 5 illustrates the structure of the
computational pipeline. In the figure, small values of parameters are used for the purpose
minimizing the size of the pipeline, while still illustrating its basic structure. Realistic
parameters values would be on the order of thousands, resulting in a pipeline with
millions of registers. Further details on sizing analysis and hardware comparisons

17

between a deep pipeline implementation versus a multiprocessor implementation are
provided in the online link to the presentation materials for reference [15I].

a2r1 a2r0 a1r1 a1r0 a0r1 a0r0

Example: no. range bins = n = 4 range kernel size = r = 2 azimuth kernel size = a = 3

R0
>

R1
>

R2
>

R3
>

R4
>

R5
>

R6
>

R7
>

R8
>

R9
>

+

input
stream

output
stream

+ +

+

+

no. registers = (a × n) – (n – r) no. KCMs = (a × r)
Figure 5. Structure of the deep pipeline.

 One potential advantage of the proposed approach is that data need not be

continuously stored and then fetched from a separate memory module by CEs (which,
incidentally, can require significant power consumption). Instead, the data streams
continuously through a long computational pipeline. Within this pipeline are the taps of
the FIR (finite impulse response) implementations of both the range and azimuth
processing, interspersed with segments of delay elements. Although the resulting pipeline
may be thousands of stages long for practical values of SAR parameters, it is a viable
approach because end-to-end latencies on the order of 1 millisecond are typically
acceptable, provided that the required throughput is achieved.

The second contribution presented in [15I] demonstrates how signal activity
parameters of incoming data can be transformed, before the data are processed by a
computational pipeline, as a means of reducing overall power consumption. The key to
understanding this approach is the realization that the activity levels of the input signals
to the computational pipeline dictate its level of power consumption. The activity of a
given input signal (i.e., bit position) is defined as the fraction of time that the signal
transitions relative to the system clock. We demonstrated that increasing/decreasing the
signal activities of input data to a pipelined circuit implemented on an FPGA also

18

increases/decreases the power consumption of the circuit. In [15I], we introduce a
concept for how the activities of the input data can be transformed (pre-processed) so that
the resulting (transformed) signals that are input into the computational pipeline have
activity values that are well-matched with the pipelined circuit in terms of minimizing
consumed power. At the end of the computational pipeline, an inverse transformation is
applied to the output values to convert them back to their proper (and meaningful)
representation. This concept is illustrated in Figure 6. The approach is based on two
fundamental assumptions: (1) that the power consumption of the computational pipeline
is significantly higher than that of the computational structures implemented to perform
the transform and inverse transformation of the data and (2) that the computations
performed within the computational pipeline are linear and time invariant.

Deep Pipeline

Assume Power Model
P(a’)

input
stream

output
stream

-1TT
a a’

Figure 6. Using activity transformations to minimize power consumption.

Overview of References [16J] and [17]

References [16J] and [17] present a comparative study of different parallel prefix circuits
from the point of view of power-speed trade-off. The prefix circuit plays an important
role in many applications such as the carry-look-ahead adder, ranking, packing, and radix
sort. The power consumption and the power-delay product of seven parallel prefix
circuits were compared. By assuming a linear capacitance model, combined with
PSpice® simulations, we investigated the power consumption in the parallel prefix
circuits. The degrees of freedom studied include different parallel prefix architectures and
voltage scaling. The results show that the use of the linear output capacitance assumption
provides power estimates that are consistent with those obtained using PSpice®
simulations. It was found that the divide-and-conquer prefix circuit, which is the fastest
circuit considered, consumes the most power. Also – according to PSpice® simulations –
the power-delay product of the LYD (Lakshmivarahan-Yang-Dhall) prefix circuit was
the best (i.e., lowest) among the circuits studied, while the power-delay product of the
divide-and-conquer was the highest. This study demonstrates the importance of careful
analysis of the speed-power trade-off when considering architectural choices for
implementing a given computational function in hardware.

19

Part 4: Hybrid FPGA/DSP/GPP Platform

Overview of Reference [18K]

The prototype platform was developed to demonstrate the advantages and trade-offs
associated with the combined use of different hardware technologies for two embedded
radar-processing applications, namely SAR and STAP. The primary metrics of interest
are size, weight, and power utilizations. The developed system can be configured with
FPGAs, DSPs, and/or GPPs. Although the prototype system was not evaluated through
fielded studies, experiments involving continuous input streams at relatively high rates
were conducted in the laboratory using unprocessed radar data as input.

The FPGA components of the prototype system are commercially available
WildOneTM and WildForceTM boards (from Annapolis Microsystems) populated with
4000-series Xilinx® parts. The WildForceTM boards each have four 4085-series FPGAs
plus one control FPGA. The DSP/GPP components of the system are within a Mercury
Race Multicomputer configured with both SHARC® and PowerPC® CNs. The Mercury
system can be configured with up to eight PowerPC® nodes and eight SHARC®
compute nodes (each SHARC® CN actually contains three SHARC® DSP chips).

An overview of the overall architecture is depicted in Figure 7. A more detailed view
of the major components of the hybrid system are illustrated in Figure 8, and a
photograph of the actual prototype system is provided in Figure 9.

The source PC is responsible for initially loading unprocessed radar data (from disk)
into a circular buffer within its main memory. Once the input data is loaded into the
circular buffer, the source PC then continuously (and repeatedly) streams this data into
the front-end FPGA subsystem, denoted as (F) in Figures 7, 8, and 9. It was necessary to
locate the input data in a large main memory buffer in order to achieve realistic data
throughput rates, which would otherwise not be possible if the data were streamed
directly from the disk of the source PC. All of the Annapolis FPGA boards are PCI-
based and reside on the data source and/or data sink PCs. A total of four WildForceTM
boards are available, and zero or more of these may reside on the source and sink PCs.
The source and sink PCs also contain one WildOneTM board each. The WildOneTM
boards are not used for computation; they handle the data communication (through the
PCI bus) between the PCs and the FPGA subsystems. The data communication among all
FPGA boards is through two types of 36-bit wide connectors, one called systolic and one
called SIMD.

The data communication between the front-end FPGA subsystem (F) and the
DSP/GPP subsystem is a custom interface developed using the systolic connector from
Annapolis and the RIN-T input device from Mercury. Similarly, the data communication
between the DSP/GPP subsystem and the back-end FPGA subsystem (B) is through a
custom interface developed using the ROUT-T output device from Mercury and the
systolic connector from Annapolis. More details on the design of the interfaces between
the Mercury and the front- and back-end subsystems are provided in Figures 10 and 11,
respectively.

20

Data
Source

VME

Mercury
System

CNCNPEPE
... ...

SPARC

Reconfigurable
Subsystem

DSP/GPP
Subsystem

Data
Sink

Annapolis
System

(F)
120 MB/sec

PC

120 MB/sec120 MB/sec

PC

PCI Custom Custom

PEPE
...

Reconfigurable
Subsystem

Annapolis
System

(B)

PCI

120 MB/sec

Hybrid FPGA/DSP/GPP Prototype Architecture
Block Diagram

Figure 7. Block diagram of the FPGA/DSP/GPP prototype architecture.

Design and implementation of the interface connecting the Mercury to the back-end
FPGA subsystem (B), shown in Figure 11, was particularly challenging. The clock signal
used to strobe the data from the Mercury was not programmable; it was fixed at 33 MHz.
It turned out that the input impedance of the back-end FPGA subsystem was not very
well matched with the output of the Mercury subsystem. As a result, the maximum clock
rate possible was only about 8Mhz, or about one-fourth of fixed 33Mhz clock available.
So, we implemented a scheme in which four copies each data word was transmitted from
the Mercury, which effectively reduced the clock rate by a factor of four. We also had to
include a packing scheme, which encoded two bits of each transmitted word to enable
detection of the boundary between groups of copied data. This was necessary because the
actual number of copies of each word received by the back-end GPGA subsystem was
unpredictable, and varied between two and four. More details on this scheme can be
found at the online link to the presentation materials for reference [18K].

Figures 12 and 13 illustrate how the major computational components of the SAR and
STAP applications can be mapped onto the prototype system. A candidate mapping is
defined by assigning the computations of each major component to one or both of the
symbols shown in each block (which correspond to one of the FPGA or DSP/GPP
subsystems defined in Figure 7). Using SAR to illustrate, one mapping would be to

21

perform all of the range compression on the front-end FPGA subsystem (F) and then
perform all azimuth processing on the DSP/GPP subsystem. Another possible mapping is
defined by using the FPGA subsystems and the DSP/GPP for both components of
computation. It is also possible to use only the DSP/GPP subsystem for both components
of computations.

PCI MOTHER BOARD
PENTIUM DRAM

W
IL

D

O
N

E

SR
AM

SR
A

M

A
N

N
A

PO
LI

S

W
IL

D
FO

R
C

E

A
N

N
A

PO
LI

S

W
IL

D
FO

R
C

E

A
N

N
A

PO
LI

S

W
IL

D
FO

R
C

E

A
N

N
A

PO
LI

S

W
IL

D
FO

R
C

E

HARD DISK DRIVE

Hybrid FPGA/DSP/GPP Prototype Architecture
Logical Detail

PCI MOTHER BOARD
PENTIUM DRAM

W
IL

D

O
N

E

SR
A

M

S
R

AM

A
N

N
A

PO
LI

S

W
IL

D
FO

R
C

E

A
N

N
A

PO
LI

S

W
IL

D
FO

R
C

E

A
N

N
A

PO
LI

S

W
IL

D
FO

R
C

E

A
N

N
A

PO
LI

S

W
IL

D
FO

R
C

E

HARD DISK DRIVE

C
N C

N C
N

C
N C

N C
N C

N

C
N C

N

C
N C

N C
N C

N

C
N

D
R

AM

AS
IC

R
IN

-T

VME BACKPLANE

M
ER

C
U

R
Y

R
A

C
E

M
C

H
 9

U
 B

O
A

R
D

H
AR

D
 D

IS
K

D
R

IV
E

D
R

AM
SP

AR
C

R
O

U
T-

T FO
R

C
E

SP
A

R
C

 5
V

C
N

Data Source
PC

Annapolis
FPGA

Subsystem
(F)

Custom
Interface
Cables

SPARC

Mercury
DSP/GPP

Subsystem

Data Sink
PC

Annapolis
FPGA

Subsystem
(B)

Figure 8. Detail of the FPGA/DSP/GPP prototype architecture.

The SAR studies were designed by adapting the RASSP (Rapid Prototyping of

Application Specific Signal Processors) benchmark developed originally by Lincoln
Laboratory at MIT. The benchmark, which was originally implemented in serial C code,
was first modified to execute on the parallel DSP/GPP subsystem. A data-streaming
component was also added so that input data can be sent continuously from the data
source of the prototype system. Core computations from the range compression and
azimuth processing components were implemented for the FPGA subsystems, as
described earlier in Part 3 of this report.

An overview of SAR processing flow is provided in Figure 14. The data distribution
scheme for SAR is illustrated in Figure 15. For the case shown in the figure, a total of
eight CNs were utilized: two SHARC® CNs (one for input and the other for output) and
six PowerPC® CNs (two for range processing and four for azimuth processing). A
detailed timing diagram is shown in Figure 16. Note from this figure that the processing

22

is well balanced and that the amount of idle time for each CN is relatively small. A
summary of time and throughput results are provided in Figure 17. Note that the required
input and output throughputs realized for this particular study, 0.71 Mbytes/sec and 1.42
Mbytes/sec, are well within the maximum capacity supported by the custom interfaces of
60 Mbytes/sec and 31 Mbytes/sec (refer to Figures 10 and 11). This implies that the
constructed prototype system is capable of processing much more intensive instances of
SAR processing.

Hybrid FPGA/DSP/GPP Prototype Architecture
Photograph

Data Sink
PC

Data Source
PC

Custom Interface Cables

Mercury
DSP/GPP

Subsystem

Annapolis
FPGA

Subsystem
(F) Annapolis

FPGA
Subsystem

(B)

SPARC

Figure 9. Photograph of the FPGA/DSP/GPP prototype architecture.

The STAP studies were designed by adapting the RT_STAP (Real Time STAP)

benchmark developed originally at the MITRE Corporation. This benchmark was already
implemented for parallel execution on a PowerPC-based Mercury system. This
implementation was expanded to also enable execution on SHARC® compute nodes. The
same basic data streaming component that was developed for SAR was also adapted to
enable the STAP input data to be sent continuously from the data source. Core
computations from the range compression and weight computation components from the
STAP processing flow were implemented for the FPGA subsystems.

Similar to the figures associated with SAR, an overview of the scheme used to stream
STAP processing is provided in Figure 18. Note from the figure that two SHARC®
compute nodes are used for I/O and eight PowerPC® are used to actually perform the

23

STAP computations (for the particular instance of STAP considered). Unlike SAR, where
CNs are dedicated exclusively to one particular phase of the computation, in the STAP
implementation all CNs work on all three phases of computation. Figure 19 illustrates the
three phases of computation required by STAP and the two communication phases (i.e.,
re-partitioning of the data cube) between the three phases. A space-time diagram is
provided in Figure 20 followed by a summary of obtained throughput results in Figure
21. As was the case for SAR, note from Figure 21 that the required input and output
throughputs realized for this particular study are well within the maximum capacity
supported by our custom interfaces.

Write_to_
RIN-T

Read_from
_Host

Wait

buffer_empty3buffer_full2

1 Suspend from the RIN-T
2 FPGA memory buffer is full
3 FPGA memory buffer is empty

suspend1

Init

Communication from Annapolis FPGA (F) to Mercury
Interface Design

Init RIN-T

Wait_for_
data

Determine_
Dest_CN Send_Data

not_empty

Create_DX_
transfer

complete

Annapolis FPGA Subsystem (F)
Mercury Subsystem

32 Data*

Strobe

Valid

Suspend

suspend1

*Peak throughput achieved to date: (15 MHz) × (4 Bytes) = 60 Mbytes/sec
Figure 10. Interface Design: Communication from Annapolis FPGA (F) to Mercury.

24

Read_from_
ROUT-T

Write_to_
Host

Wait

buffer_empty2 buffer_full3

valid1 valid1

Init

1 Valid output from the ROUT-T
2 FPGA memory buffer is empty
3 FPGA memory buffer is full

Annapolis FPGA Subsystem (B)

32 Data*

Strobe

Valid

Suspend

Mercury Subsystem

Init ROUT-T

Wait_for_
data

Pack_Data

Create_DX_
transfer

data_ready

Replicate_
Data

Send_Data
_to_ROUT-T

Communication from Mercury to Annapolis FPGA (B)
Interface Design

*Peak effective throughput: (33 MHz)×(4 Bytes)×(1/4)×(30/32)=31 Mbytes/sec
replication factor packing factor

Figure 11. Interface Design: Communication from Mercury to Annapolis FPGA (B).

Range
Compression

(F)

Azimuth
Processing

(B)

Figure 12. Illustration of how the major computational components of SAR processing
can be mapped onto the hybrid system.

25

Range
Compression

Doppler
Filtering

Weight
Computation

(F) (B)

Figure 13. Illustration of how the major computational components of STAP processing
can be mapped onto the hybrid system.

Pulse Compression
Fix-to-
Float

Input Data

Digital I/Q
(real-to-

complex)

Pulse return
N range cells

Range-Compressed
Pulse return
N range cells

Magnitude
Azm. Compression
-Fast Convolution

(sectioned)

Output Image Buffer

N Range cells

K

Corner-Turning
Double-Buffer

N Range cells

N=2048

K: Pulse Number =512

SAR Processing Flow*

*Figure Derived from:T. Einstein, “Realtime Synthetic Aperture Radar Processing on the
RACE Multicomputer,” App. Note 203.0, Mercury Computing Sys, 1996.

Figure 14. Figure 14. SAR Processing Flow.

26

2048153610245121CN 2 Input Buffer

512

1

1, 2, ……, …… 2048
(2048 range gates)

Input
(Odd Pulses From

SHARC CN 1) CN2
Range Processing

CN2 DMA CN3 DMA

CN5 Input Buffer

CN 5
Corner Turn

CN 4
Double-Buffered Memory

(512 * 1024 double
complex data)

1

CN2 DMA CN3 DMA

CN4 Input Buffer

CN 4
Corner Turn

CN2 DMA CN3 DMA

CN6 Input Buffer

CN 6
Corner Turn

CN2 DMA CN3 DMA

CN7 Input Buffer

CN 7
Corner Turn

CN 4
Azimuth Processing

CN 4 Output Buffer CN 8 (SHARC)
Output Image Buffer

CN 4 DMA

CN 5 DMA

CN 6 DMA

CN 7 DMA
1024

4 * 512
* 512

Data Distribution for Parallel SAR Processing on Mercury
Using 6 PPC CNs for Processing and 2 SHARC CNs for I/O

CN 2 Output Buffer

Figure 15. Data distribution for Parallel SAR Processing on Mercury.

27

Space-Time Diagram for Streaming Parallel SAR Processing
Using 6 PPC CNs for Processing and 2 SHARC CNs for I/O

. . . (2048 range gates). . . (2048 range gates)

. . .
(512 pulses)

. . . (512 range gates)

. . . (512 range gates)

. . . (512 range gates)

. . . (512 range gates)

. . .
(512 pulses)

. . .
(512 pulses)

. . .
(256 pulses)

. . .
(256 pulses)

. . .
(256 pulses)

. . .
(256 Pulses)

. . .
(256 Pulses)

. . .
(256 Pulses)

t=0

CN8
(output)

CN7

CN6

CN5

CN4

CN3

CN2

CN1
(input)

odd pulses comm. timeeven pulses

. . . (512 range gates) . . . (512 range gates)

. . . (512 range gates) . . . (512 range gates)

idle time

t=16.8st=11.2st=5.6s

Figure 16. Space-time diagram for streaming parallel SAR processing.

28

CN1 CN2

CN3

CN5

CN6

CN8

CN7

CN4

Input
Data

Output
Data

Streaming Parallel SAR Processing Throughput Requirements
Using 6 PPC CNs for Processing and 2 SHARC CNs for I/O

Range
Processor

Azimuth
Processor

5.6 sec 5.6 sec

Input Data Size = 512 × 2 × 2032 × 2
= 4 MBytes

Input Throughput = 4 MBytes/5.6 sec
= 0.71 MBytes/sec

Output Data Size = 512 × 2048 × 2 × 4
= 8 Mbytes

Out Throughput = 8 MBytes/5.6 sec
= 1.42 MBytes/sec

Figure 17. Throughput requirements achieved for streaming parallel SAR processing.

29

Processing CNs
(PowerPCs)

2 – 4K×18
FIFOs

ROUT

Output Manager
(SHARC)

CN SMB
(data)

sync

2 – 4K×18
FIFOs

RINT

Input Manager
(SHARC)

CN SMB
(data)

sync

SMB
(data)

sync
CN1

SMB
(data)

sync
CN2

SMB
(data)

sync
CN8

SMB
(data)

sync
CN7

Streaming Parallel RT_STAP on Mercury Subsystem

D
is

tri
bu

te
 In

pu
t D

at
a

C
ub

e

G
at

he
r O

ut
pu

t
D

at
a

M
at

rix

Figure 18. Streaming parallel RT_STAP on Mercury Subsystem.

30

Pulse Compress
(range dimension whole)

Doppler Filter
(pulse dimension whole)

QR Decomposition
(channel-range seq.

planes whole)

Re-Partition
Data Cube

Re-Partition
Data Cube

.

.

.

CN1

CN2

CN7

CN8

CN1

CN2

CN7

CN8

CN1

CN2

CN7

CN8

.

.

.

.

.

.

In
pu

t D
at

a
C

ub
e

O
ut

pu
t D

at
a

M
at

rix

Parallel RT_STAP on Mercury Subsystem*

*Figure Derived from:M. Skalabrin and T. Einstein, “STAP Processing on Multiprocessor Systems: Distribution of
3-D Data Sets and Processor Allocation for Efficient Interprocessor Communication,” ASAP Workshop, Mar. 1996.

Figure 19. Parallel RT_STAP on Mercury Subsystem.

31

Space-Time Diagram for Parallel RT_STAP
Using 8 PPC CNs for Processing and 2 SHARC CNs for I/O

CN4

CN7

CN8

CN2

CN5

CN6

SHARC
(Output)

CN1

CN3

Input Data Cube 1

SHARC
(Input)

comm. time idle time
t=0 t=4s T=4.5s

Output Data Matrix

Input Data Cube 2

Figure 20. Space-time diagram for parallel RT_STAP.

32

RT_STAP Data Cube

C
ha

nn
el

s
(1

6)

Pulse
s (

64
)

Samples (1920)

STAP

D
op

pl
er

s
(6

4)

Ranges (480)

Output Complex
Data Matrix

23 msecGather Output Data

4 secDistribute Input Data

4.5 secTotal Time

99.36 msecQR Decomposition
112.48 msecSecond Rotation
25.32 msecDoppler Filter
21.18 msecFirst Rotation
299.48 msecPulse Compress

TimeFunction

Input Data Size = 16 × 64 × 1920 × 2 = 4 MBytes
Output Data Size = 64 × 480 × 8 = 0.25 MBytes

Input Throughput = 4 Mbytes/4.5 sec
= 0.89 Mbytes/sec

Output Throughput = 0.25 Mbytes/4.5 sec
= 0.056 Mbytes/sec

Throughput Requirements for Medium Case Parallel RT_STAP
Using 8 PPC CNs for Processing and 2 SHARC CNs for I/O

Figure 21. Throughput requirements achieved for the medium case parallel RT_STAP.

33

Conclusion

Technology Transfer

Technology transfer took place along five main paths: (1) the DARPA Adapted
Computing Systems (ACS) community through PI (Principal Investigator) meetings and
other conferences (plus communications with PIs and program managers in related
areas); (2) the employees and technical support contacts at Mercury Computer Systems,
Inc.; (3) the employees and technical support contacts at Annapolis Micro Systems, Inc.;
(4) contacts with various defense contractors such as Northrop Grumman; and (5) the
academic high-performance embedded computing research community.

Regarding path (1), we worked with DARPA and other PIs associated with related
projects to ensure efficient transfer of information and technology. We attended all PI
meetings and helped support DARPA in presenting the results of this effort for further
program funding.

For paths (2) and (3), we consulted with the vendors on a regular basis, especially
during the period of time in which the prototype system was being constructed. We kept
both vendors informed on the current status of the prototype throughout the project. The
success of our project sparked interaction between the two vendors in terms of defining
and refining interface standards for interconnecting their products. These new standards,
which were not available at the time we were constructing our prototype, make it much
easier to construct an FPGA/DSP/GPP system such as the one implemented for this
project.

The transfer along path (4) was important because it enabled our proposed approaches
to be considered and evaluated by defense systems designers and end-users. Also, staying
in close contact with major defense contractors and other contractors that were part of the
ACS program, ensured that the approaches and systems we developed were realistic.

As indicated by path (5), it was important to keep the academic research community
informed about our developments. The publications that resulted from this project have
made an impact and serve to illustrate the types of research of interest to DARPA. It also
illustrated that there is an abundance of basic, fundamental research to be done on the
way to solving important problems of military interest.

Deliverables

This project delivered an abundance of results of both practical and theoretical
importance. Many of these results have been published as journal and conference papers,
and copies of these papers are provided in the appendices of this report. Online links to
delivered publications, presentation materials, dissertations, theses, and additional
materials are provided in the References and Additional Materials sections of the report.
Associated with each publication is one or more tool or technique of immediate practical
importance to practitioners in the area of embedded high-performance systems design
and implementation. Also delivered was a prototype platform in which the three
technologies of interest (FPGA, DSP, and GPP) were integrated into a single high-
performance computational engine. This platform served as a test bed in which

34

experimental tests, evaluations, and assessments associated with the research were
conducted.

The theme of the project was to focus on techniques and systems for minimizing
power consumption requirements for two particular radar-processing applications. In
addition to providing results along these lines, many of the techniques and results
delivered are applicable to a much broader set of problems that arise in high-
performance, SWAP-constrained embedded systems.

35

References

[1A] Jeffrey T. Muehring and John K. Antonio, “Optimal Configuration of an
Embedded Parallel System for Synthetic Aperture Radar Processing,”
Proceedings of the International Conference on Signal Processing Applications
& Technology, Boston, MA, Oct. 1996, pp. 1489-1494.

 Location: Appendix A and http://www.cs.ou.edu/~antonio/pubs/conf033.pdf

 [2B] Jeffrey T. Muehring and John K. Antonio, “Optimal Configuration of Compute
Nodes for Synthetic Aperture Radar Processing,” Proceedings of the
International Workshop on Embedded HPC Systems and Applications (EHPC
‘98), in Lecture Notes in Computer Science 1388: Parallel and Distributed
Processing, edited by Jose Rolim, sponsor: IEEE Computer Society, Orlando, FL,
USA, Apr. 1998, pp. 987-993.

 Location: Appendix B and http://www.cs.ou.edu/~antonio/pubs/conf035.pdf
 Presentation Materials: http://www.cs.ou.edu/~antonio/pubs/p-conf035.pdf

[3] Jeffrey T. Muehring, Optimal Configuration of a Parallel Embedded System for
Synthetic Aperture Radar Processing, Master’s Thesis, Department of Computer
Science, Texas Tech University, Lubbock, TX, Dec. 1997.

 Location: http://www.cs.ou.edu/~antonio/pubs/muehring_thesis.pdf

[4C] Jack M. West and John K. Antonio, “Simulation of the Communication Time for
a Space-Time Adaptive Processing Algorithm on a Parallel Embedded System,”
Proceedings of the International Workshop on Embedded HPC Systems and
Applications (EHPC ‘98), in Lecture Notes in Computer Science 1388: Parallel
and Distributed Processing, edited by Jose Rolim, sponsor: IEEE Computer
Society, Orlando, FL, USA, Apr. 1998, pp. 979-986.

 Location: Appendix C and http://www.cs.ou.edu/~antonio/pubs/conf036.pdf
 Presentation Materials: http://www.cs.ou.edu/~antonio/pubs/p-conf036.pdf

[5D] Jack M. West and John K. Antonio, “A Genetic Algorithm Approach to
Scheduling Communications for a Class of Parallel Space-Time Adaptive
Processing Algorithms,” Proceedings of the 5th International Workshop on
Embedded/Distributed HPC Systems and Applications (EHPC 2000), in Lecture
Notes in Computer Science, IPDPS 2000 Workshops, sponsor: IEEE Computer
Society, Cancun, Mexico, May 2000, pp. 855-861.

 Location: Appendix D and http://www.cs.ou.edu/~antonio/pubs/conf042.pdf
 Presentation Materials: http://www.cs.ou.edu/~antonio/pubs/p-conf042.pdf

[6E] Jack M. West and John K. Antonio, “A Genetic-Algorithm Approach to
Scheduling Communications for Embedded Parallel Space-Time Adaptive
Processing Algorithms,” Journal of Parallel and Distributed Computing, Vol. 62,
No. 9, Sept. 2002, pp. 1386-1406.
Location: Appendix E and http://www.cs.ou.edu/~antonio/pubs/jour016.pdf

36

[7] Jack M. West, Simulation of Communication Time for a Space-Time Adaptive
Processing Algorithm on a Parallel Embedded System, Master’s Thesis,
Department of Computer Science, Texas Tech University, Lubbock, TX, Aug.
1998.

 Location: http://www.cs.ou.edu/~antonio/pubs/west_thesis.pdf

[8] Jack M. West, Processor Allocation, Message Scheduling, and Algorithm
Selection for Space-Time Adaptive Processing, Doctoral Dissertation, Department
of Computer Science, Texas Tech University, Lubbock, TX, Aug. 2000.

 Location: http://www.cs.ou.edu/~antonio/pubs/west_diss.pdf

[9F] Timothy Osmulski, Jeffrey T. Muehring, Brian Veale, Jack M. West, Hongping
Li, Sirirut Vanichayobon, Seok-Hyun Ko, John K. Antonio, and Sudarshan K.
Dhall, “A Probabilistic Power Prediction Tool for the Xilinx 4000-Series FPGA,”
Proceedings of the 5th International Workshop on Embedded/Distributed HPC
Systems and Applications (EHPC 2000), in Lecture Notes in Computer Science,
IPDPS 2000 Workshops, sponsor: IEEE Computer Society, Cancun, Mexico, May
2000, pp. 776-783.

 Location Appendix F and http://www.cs.ou.edu/~antonio/pubs/conf041.pdf
 Presentation Materials: http://www.cs.ou.edu/~antonio/pubs/p-conf041.pdf

[10] Timothy A. Osmulski, Implementation and Evaluation of a Power Prediction
Model for a Field Programmable Gate Array, Master’s Thesis, Department of
Computer Science, Texas Tech University, Lubbock, TX, May 1998.

 Location: http://www.cs.ou.edu/~antonio/pubs/osmulski_thesis.pdf

[11G] Hongping Li, John K. Antonio, and Sudarshan K. Dhall, “Fast and Precise Power
Prediction for Combinational Circuits,” Proceedings of the IEEE Symposium on
VLSI, sponsor: IEEE, Tampa, FL, Feb 2003, pp. 254-259.

 Location Appendix G and http://www.cs.ou.edu/~antonio/pubs/conf046.pdf
 Presentation Materials: http://www.cs.ou.edu/~antonio/pubs/p-conf046.pdf

[12H] Nikhil D. Gupta, John K. Antonio, and Jack M. West, “Reconfigurable
Computing for Space-Time Adaptive Processing” Proceedings of the Sixth
Annual IEEE Symposium on Field Programmable Custom Computing Machines
(FCCM), Napa, CA, USA, Apr. 1998, pp. 335-336.

 Location: Appendix H and http://www.cs.ou.edu/~antonio/pubs/conf037.pdf

[13] Nikhil D. Gupta, Reconfigurable Computing for Space-Time Adaptive Processing,
Master’s Thesis, Department of Computer Science, Texas Tech University,
Lubbock, TX, August 1998.

 Location: http://www.cs.ou.edu/~antonio/pubs/gupta_thesis.pdf

[14] Brian F. Veale, Study of Power Consumption For High-Performance
Reconfigurable Computing Architectures, Master’s Thesis, Department of
Computer Science, Texas Tech University, Lubbock, TX, August 1999.

 Location: http://www.cs.ou.edu/~antonio/pubs/veale_thesis.pdf

37

 [15I] Jeffrey T. Muehring and John K. Antonio, “Minimizing Power Consumption
using Signal Activity Transformations for Very Deep FPGA Pipelines,”
Proceedings of the Military and Aerospace Applications for Programmable
Devices and Technologies Conference (MAPLD 2000), sponsors: NASA and
Johns Hopkins University/Applied Physics Laboratory, Laurel, MD, Sep. 2000.

 Location Appendix I and http://www.cs.ou.edu/~antonio/pubs/conf044.pdf
 Presentation Materials: http://www.cs.ou.edu/~antonio/pubs/p-conf044.pdf

[16J] S. Vanichayobon, Sudarshan K. Dhall, S. Lakshmivarahan, and John K. Antonio,
“Power-speed Trade-off in Parallel Prefix Circuits,” Proceedings of ITComm
2002, High-Performance Pervasive Computing Conference, sponsor: SPIE,
Boston, MA, July/Aug. 2002, pp. 109-120.

 Location Appendix J and http://www.cs.ou.edu/~antonio/pubs/conf045.pdf
 Presentation Materials: http://www.cs.ou.edu/~antonio/pubs/p-conf045.pdf

[17] Sirirut Vanichayobon, Power-Speed Trade-Off in Parallel Prefix Circuits,
Doctoral Dissertation, School of Computer Science, University of Oklahoma,
Norman, OK, 2002.

 Location: http://www.cs.ou.edu/~antonio/pubs/sirirut_diss.pdf

[18K] Jack M. West, Hongping Li, Sirirut Vanichayobon, Jeffrey T. Muehring, John K.
Antonio, and Sudarshan K. Dhall, “A Hybrid FPGA/DSP/GPP Prototype
Architecture for SAR and STAP,” Proceedings of the Fourth Annual High
Performance Embedded Computing Workshop, sponsors: U.S. Navy and Defense
Advanced Research Projects Agency (DARPA), MIT Lincoln Laboratory
Publications, Group 18, Lexington, MA, Sep. 2000, pp. 29-30.

 Location: Appendix K and http://www.cs.ou.edu/~antonio/pubs/conf043.pdf
 Presentation Materials: http://www.cs.ou.edu/~antonio/pubs/p-conf043.pdf

38

Additional Materials

Annual Reviews and Kickoff Presented to DARPA

Fall 1999 Annual Review: http://www.cs.ou.edu/~antonio/pubs/p-ann_rev99acs.pdf
Fall 1998 Annual Review: http://www.cs.ou.edu/~antonio/pubs/p-ann_rev98acs.pdf
Fall 1997 Kickoff: http://www.cs.ou.edu/~antonio/pubs/p-kickoff97acs.pdf

PI Meeting Presentations and Posters

Presentation, Spring 2000 PI Meeting: http://www.cs.ou.edu/~antonio/pubs/p-
sp00acs.pdf
Poster, Spring 2000 PI Meeting: http://www.cs.ou.edu/~antonio/pubs/poster-sp00acs.ppt

Presentation, Fall 1999 PI Meeting: http://www.cs.ou.edu/~antonio/pubs/p-fall99acs.pdf
Poster, Fall 1999 PI Meeting: http://www.cs.ou.edu/~antonio/pubs/poster-fall99acs.ppt

Poster, Spring 1999 PI Meeting: http://www.cs.ou.edu/~antonio/pubs/poster-sp99acs.ppt

Poster, Fall 1998 PI Meeting: http://www.cs.ou.edu/~antonio/pubs/poster-fall98acs.ppt

Poster 1, Spring 1998 PI Meeting:
http://www.cs.ou.edu/~antonio/pubs/poster1-sp98acs.ppt

Poster 2, Spring 1998 PI Meeting:
http://www.cs.ou.edu/~antonio/pubs/poster2-sp98acs.ppt

Presentation, Fall 1997 PI Meeting: http://www.cs.ou.edu/~antonio/pubs/p-fall97acs.pdf
Poster, Fall 1997 PI Meeting: http://www.cs.ou.edu/~antonio/pubs/poster-fall97acs.pdf

Technical Report

Hongping Li, John K. Antonio, and Sudarshan K. Dhall, “Fast and Precise Power
Prediction for Combinational Circuits,” University of Oklahoma, School of Computer
Science, Technical Report No. CS-TR-02-001, Nov. 2002, 42 pages.
http://www.cs.ou.edu/~antonio/pubs/tr013.pdf (expanded content of [11G]).

39

List of Acronyms

ACS Adaptive Computing Systems
ASIC application specific integrated circuit
CE compute element
CLB configurable logic block
CN compute node
COTS commercial off the shelf
DARPA Defense Advanced Research Projects Agency
DSP digital signal processor
FLOP floating-point operation
FPGA field programmable gate array
GA genetic algorithm
GPP general-purpose processor
IEEE Institute of Electrical and Electronics Engineers
MIT Massachusetts Institute of Technology
PC personal computer
PCI peripheral component interconnection
PI principal investigator
RASSP rapid prototyping of application specific signal processors
RT_STAP real-time space-time adaptive processing
SAR synthetic aperture radar
SHARC® “super” Harvard architecture
STAP space-time adaptive processing
SWAP size, weight, and power
UAV unmanned aerial vehicle

40

Appendix A: Jeffrey T. Muehring and John K. Antonio, “Optimal Configuration of an
Embedded Parallel System for Synthetic Aperture Radar Processing,” Proceedings of the
International Conference on Signal Processing Applications & Technology, Boston, MA,
Oct. 1996, pp. 1489-1494.

41

Optimal Configuration of an Embedded Parallel System

Jeffrey T. Muehring and John K. Antonio
Department of Computer Science

Texas Tech University
Lubbock, Texas 79409-3104

{jmuehrin, antonio}@cs.ttu.edu

Abstract-The creation of a synthetic aperture radar
(SAR) image involves processing radar return signals
in real-time using a computing platform on board the
aircraft that houses the SAR system. In such envi-
ronments, it is important to minimize the total power
consumption of all onboard systems. This is especially
true for applications that utilize small unmanned air-
craft or satellites. In this paper, a mathematical op-
timization technique is formulated - based on nonlin-
ear programming - for determining the optimal (i.e.,
minimal consumed power) configuration of an onboard
parallel computing platform for SAR processing. The
target hardware for thin study is a Mercury Race Sys-
tem that is assumed to be configurable using a com-
bination of two types of daughtercards: one type has
six processors and a total of 32MB of memory; the
other type has two processors and a total of 64MB of
memory.

1 INTRODUCTION

Because radar is a ranging instrument, the resolu-
tion associated with a single radar return depends on
the width of the transmitted pulse; the shorter the
pulse, the higher the resolution. However, generating
short radar pulses requires high power [2]. In many
applications where very high-resolution radar images
are desired, there are hard constraints on the allow-
ahle size, weight, and power of the radar system (e.g.,
satellites and immanned aircraft). Thus, radar sys-
tetns that can generate extremely narrow pulses are
not feasible in such applications because of their asso-
ciated large size and/or high power requirements.

Synthetic aperture radar (SAR) is a processing
technique for achieving high-resolution images from
relatively small and low-power radar systems. Specif-
ically, SAR involves the processing of multiple low-
resolution radar returns to emulate a high-resolution

IS supported by Romo Laboratory under grant
iber P30602-96-1-0098.

return. Typical applications for SAR include ground
surveillance and terrain mapping. Advantages of us-
ing SAR instead of optical imaging techniques include
radar's immunity to weather and lighting conditions.
Image resolutions for typical SAR applications cai
range from 50 m down to 0.5 m [3]. Due to space
limitations, detailed backgroxmd information on the
theoretical foundations of SAR processing is not in-
cluded here; however, there are numerous excellent
books on the topic (e.g., see [2]).

In addition to the size and power associated with
the radar equipment itself, the size and power of the
computing platform used to perform the SAR process-
ing can also become significant. Minimizing the power
of the computing platform used for SAR proces.sing,
for a given radar system, is the focus of this paper.

SAR processing can be pajallelized and performed
on an embedded parallel computing platform. As a
first step toward deciding how to configure such a
computing platform, the aggregate required process-
ing throughput associated with a given set of sys-
tem parameters can be derived (see [3] for details).
However, the throughput requirement alone does not
uniqtiely specify how to configure the embedded com-
puter. As described in more detail in Section 2, the
computational strategy assumed here involves using
the technique of sectione<l fast convolution [5]. The
choice of the "section size" used in this tecjinique dic-
tates the relative efficiency of the processors used and
the amount of memory required. In general, a large
section size implies better computational efficiency at
the expense of requiring more memory. To fiirther
complicate the issue, there are practical constraints
on how the embedded computer Cim be configured.
Specifically, the number of processors and amount of

ing combinations of different types of daughtercards.
In this paper, two types of daughtercards are assrmied
to be avEulable: one that has six processors and a total

42

of 32MB of memory and one that has two processors
and a total of 64MB of memory.

The proposed formulation involves the deriva-
tion of a parameterized objective fimction that de-
fines the power consumption of the embedded com-
puter. This objective fiinction depends on radar-
dependent parameters, application-dependent param-
eters, processor-dependent parameters, a software-
dependent parameter, and configuration-dependent
paj-ameters (i.e., the number of daughtercards of
each type). For a fixed set of radar-, application-,
and processor-dependent parameters, values of the
software- and configuration-dependent parameters are
determined that minimize the derived objective func-
tion (i.e., the consumed power of the embedded com-
puter).

The rest of the paper is organized in the follow-
ing manner. In Section 2, an overview of the basic
computational strategy is provided and mathematical
relationships among the underlying parameters are de-
rived. Based on these mathematical relationships, the
proposed optimization problem is formulated in Sec-
tion 3. A solution technique for the proposed opti-
mization problem and numerical studies are included
in Section 4 to illustrate the utility of the proposed
approach.

2 COMPUTATIONAL FRAMEWORK

The basic computational framework assumed here
is the same as that described in [3]. The description
given here is an overview; for more details refer to [3].

Processors are divided into range and azimuth pro-
cessors. That is, every processor is dedicated exclu-
sively to the processing of data either in the range or
azimuth direction. The range direction is perpendic-
ular to the line of fiight and the azimuth direction is
parallel to the line of fiight.

After radar returns have been sampled and con-
verted to digital signals, samples are typically read
into memory at a rate of 5-50 Msamples/s [3]. By
visualizing memory as a 2-dimensional grid, a row
of memory contfdns the returns from a single radar
pulse, whereas a column contains returns of different
pulses fi-om the same range. Memory is therefore se-
quentially filled a row at a time. When a suflScient
number of rows have been filled, this data is sent to
a range processor. These blocks of data are sent to
the range processors in a round-robin fashion. Af-
ter a number of rajige processors have processed data,
the conglomerate block of data is "comer-turned," or
matrix-transposed, and then sent to the azimuth pro-
cessors. Note that the number of range and azimuth
processors need not be the same. The matrix transpo-

sition of the data dictates that the azimuth processors
receive the range-processed rows as columns and the
unprocessed columns of the azimuth direction as rows.

Processing of the samples in the range direction pri-
marily involves convolving the data with a reference
kernel. The most eflScient method of performing this
convolution is with the use of FFTs, which is known
as a fast convolution [5, 7]. It is assumed that the en-
tire vector of range samples for a given pulse return is
processed as a single section of data.

The azimuth processors perform similar operations
on the data as the range processors (i.e., fast convo-
lution) but with one important difference: the length
of the data stream in the azimuth direction is indef-
inite whereas in the range direction it is of a fixed
length. Therefore the data cannot be convolved as a
single entity in the azimuth dimension. Sectioned fast
convolution [5] provides a method for processing data
streams of indefinite length. For such a data stream,
the data is divided into sections of arbitrary length.
A section is then convolved with the prestored kernel
as in the case of a regular fast convolution. However,
overlapping the sections by an amount equal to the
kernel size and performing fast convolutions on each
overlapped section yields the same result as if the en-
tire data stream were convolved at once. But there
is a price to be paid in computational efficiency for
using this method. A portion (of length equal to the
kernel size) of each convolution resultant must be dis-
carded. Therefore, computational efficiency decreases
as the ratio of the section of new data to the kernel
size decreases.

Besides memory, another limiting factor to the size
of the new data to be convolved is the 0{NlgN) time
complexity of the standard FPT algorithm. An impor-
tant objective is to balance computational efficiency
with memory requirements. For instance, selecting a
section size that maximizes computational efficiency
alone, without regard for concomit£int memory re-
quirements, may be imfavorable due to high power
consumption of the required memory. Accounting for
this tradeoff is an important aspect of the model pre-
sented in this section.

A fast convolution consists of an iV-point FFT, N
complex multiply operations, and an N^-point inverse-
FFT, where N is the number of data points to be pro-
cessed, including any overlap. The complexity of this
computational load is therefore L = 0{NlgN + N).
The exax:t number of floating point operations gen-
erally depends on processor- and implementation-
specific details. For the purposes of this paper,
SHARC processors are assumed, for which the exact

43

number of floating point operations is given by [3|:

L = IONIAN+ &N.

The computational load per sample is obtained by di-
viding L by the number of new data points processed,
whidi reflects the efficiency of the calculation. For
range processing this load per sample, (f>r, due to the
fast convolution is given by

^ lOFrlgFr+6Fr

where F^ is the FFT size for the range and Sr is the
number of points in the range to be processed. These
two values can differ because of the stipulation in the
FFT algorithm that requires the FFT size to be a
power of two (i.e., F, = 2"=). Although this implies
some inefficiency, it is usually still faster than using
a direct convolution algorithm based on the exact se-
quence length.

The number of range points Sr is equal to the range
swath R, divided by the desired resolution S (this is an
intuitive result based on the physical interpretations
of R, and <5). Using this expression, the equation for
0r becomes

, SFr{6 + WlsFr)

R.

Similarly, the azimuth processing load per sample
due to the fast convolution is given by

, F.(6+L01gF„l

where F^ is the azimuth FFT size and Sa is the section
length. It should be noted that for both range and
azimuth processing, the reference kernels are prestored
and dependent only upon physical parameters of the
system.

To compute the number of processors required for
both range and azimuth processing, the total com-
putational load must be computed. The fast con-
volution comprises the majority of the load. How-
ever, several other operations are also involved, in-
cluding fix-to-float conversion, complex signal forma-
tion, motion compensation, magnituding, and the ma-
trix transpose already mentioned [3]. It is important
to realize that different operations can take different
amounts of time, even if they are considered to be
a "single floating point operation." Therefore, calcu-
lating the total computational load requirement per
data sample involves dividing the number of real op-
erations per sample of each type by their respective
tested throughputs for a given type of processor. This

value multiplied by the sample rate yields the total
number of processors required.

Range and azimuth processing have unique load re-
quirements in addition to the fast convolution load and
are noted by the constants a^ and «„, respectively.
The re<juired number of range processors is then de-
fined by

P. = Q(a. + ^), (1)

where Q is the sample rate and 7 is the throughput
in Mflops for a fast convolution based on the assumed
processor type used. Similarly, the number of azimuth
processors required is given by

P. = Q[cLa + —). (2)

the following equation [3]:

where v is the velocity of the platform. If this expres-
sion is substituted for Q and the expressions for 4>r
and 0o are also applied, then Eqs. (1) and (2) become

_ v((,SFr + a^iR. + lOSF^ Ig FA

_„fl.(a,-l-M^^

The total memory required for range processing is
a product of the number of range processors, P,,, and
the number of range samples, Sr- This value repre-
sents the number of complex range samples that are
stored in memory at a given instant, each complex
sample consisting of 16 bytes. Therefore the total
range memory required is

Mr = 16PrSr,

or equivalently,

16R,v{6SFr + Cr-yR, + lOSFr Ig Fr)

Azimuth memory needs dominate total system
memory, requiring a double-buffer (for the matrix
transpose operation) and an output image buffer, both
of size Sr{Sa + Ka), where K^ denotes the length of
the azimuth reference kernel. The double-buffer must
store complex values; the output image buffer stores
reals. The total azimuth memory requirement in bytes
is expressed as

Ma = 10Sr(Sa + Ka). (..

44

The VEilue of Ka can be expressed in terms of basic
parameters of the rsidar. Let A be the wavelength of
the radar. The value for Ka is derived in [3] to be:

Ail

Substituting this expression and Sr = Ra/^ into
Eq. (7) yields

3 FORMULATION OP AN OPTIMAL CONPIGU-

RATiON PROBLEM

The final equations derived above for P^, Pa, Mr,
I by Eqs. (3), (4), (6), and (8), depend

on many different types of basic system parameters.
These basic parameters can be divided into four major
categories:

• radar-dependent parameters: R (range), Ra
(range swath), and A (wavelength);

• application-dependent parameters: S (desired
resolution) and v (platform velocity);

• processor-dependent parameters: a^, a,,, and 7;
and

• software-dependent parameter: 5a.

Prom Eqs. (3), (4), (6), and (8), it appears that there
is also a dependence on the parameters JV (range FFT
size) and Fa (azimuth FFT size). However, recall that
Fr and Fa are functions of Sr and Sa + Ka, respec-
tively, and Sr and Ka can both be expressed in terms
of basic radar- and application-dependent parameters.

For the purposes of this section, denote the total
processor requirement {Pr + Pa) and the total mem-
ory requirement (Mr-f Ma) as P and M. To formulate
an optimal configuration problem, it is assumed that
all radar-, application-, and processor-dependent pa-
rameters axe specified, and Sa is to be determined.
To emphasize this dependence solely on the parsime-
ter Sa, P and M are denoted by P{Sa) and M{Sa).
The question that naturally arises is how to optimally
choose the value of Sa? More fundamentally, how does
the value of Sa affect the resulting configuration of the
computing platform and its value of consumed power?
Recall that the desired objective is to minimize the to-
tal power consumption of the computing platform.

A possible (yet unrealistic) approach would be to
model consumed power of the computing platform as

KP{Sa)+l3MiSa),

where K and (3 are constants that represent power re-
quirements on a per processor and per byte of memory
basis, respectively. Determining a value of Sa, say S*,
which minimizes this function could be used to define
an optimal configuration - i.e., a configuration that
has P(Sa) processors and M{S*) bytes of memory.

Modeling total consumed power as described above
is unrealistic because it allows configurations to have
arbitrary numbers of processors and amounts of mem-
ory. This would require, in general, that such a config-
uration be realized at the chip-level, i.e., customized
boards may have to be developed to support the de-
rived optimal configurations.

In reality, it is more practical to constrsdn the set of
configurations to those that are realizable using com-
mercially available boards that contain differing num-
bers of processors and amounts of memory. For this
study, the computing platform is assumed to be based
on a Mercury Race System that is configurable using
a combination of two possible types of daughtercards:
(1) the S2T16B, which has a total of six SHARC pro-
cessors and 32MB of memory and (2) the S1D64B,
which has a toted of two SHARC processors and 64MB
of memory. Each of these card types has a correspond-
ing maximum power consumption rating: the type 1
card is rated at 12.2 watts and the type 2 card is rated
at 9.6 watts [6]. Under this framework, the total power
consumption is modeled based on the mimber of cards
of each type utilized.

Let Ci and C2 denote the niunber of type 1 and
type 2 cards utilized, respectively. Thus, the function
for total consumed power, denoted as W, is defined as

W^=12.2Ci-|-9.6C2. (9)

Next, two required constraint equations naturally fol-
low based on the values of P(SQ) and M{Sa)-

6C1 + 2C2 > PiSa) (10)

32Ci+64C2>M(Sa). (11)

These constraint equations insme that the total num-
ber of processors in the configuration is no less than
the total number of required processors eind the total
amount of memory in the configuration is no less than
the total amount of memory required. In this frame-
work, values for the paxameters Ci and C2 must be
optimized (in addition to the value of the parameter
Sa)- Although the parameter Sa does not explicitly
appear in the objective function that is to be mini-
mized, i.e., W, its effect is implicit through the con-
straint equations.

To summarize, the proposed optimization problem
is stated as follows: find nonnegative integer values

45

for Ci, C2, and Sa such that W is minimized and
constraint Eqs. (10) and (11) are satisfied.

4 SOLVING THE OPTIMAL CONFIGURATION
PROBLEM

4.1 Proposed Solution Technique

As formulated, the proposed optimization problem
can be classified as an integer programming problem.
Solving such optimization problems can be computa-
tionally intensive (see [4] for a summary on integer
programming techniques).

Instead of directly applying an integer program-
ming technique, an alternative approach is proposed
here for solving the formulated optimization problem.
Notice that the objective and the constraint equations
are nearly continuous functions of the optimization
variables Ci, C2, and Sa- If the objective and con-
straints were continuous, then nonlinear programming
techniques (e.g., see [1]) could be applied. Such ap-
proaches often have fast convergence properties. The
only discontinuous portion in the formulation is due to
the definition of F^, which is a discontinuous function
of Sa. (Recall that F„ is defined as the smallest inte-
ger power of two that is greater than Sa + K^.) This
discontinuous function prevents the direct application
of nonlinear programming. However, by selecting F„
as an integer power of two, and adding a constraint to
ensure that Ka -f Sa is no greater than this selected
value, the discontinuity can be removed. Thus, in ad-
dition to the constraints given by Eqs. (10) and (11),
the following constraint equation is added

Ka-\-Sa<Fa, (12)

where the value of F„ = 2* > Ka is fixed (the
value of Ka is known based on the values of the
specified basic parameters). Thus, to ensure opti-
mality, it may be necessary to solve several con-
strained optimizations based on different feasible val-
ues for Fa. In practice, however, only a few val-
ues for Fa need to be tried: from the smallest
feasible value up to the point at which the op-
timal value of Sa is such that Ka + Sa < Fa
(i.e., the constraint becomes inactive).

4-2 Numerical Studies

The solution technique proposed in the previous
subsection is applied to find optimal configurations
based on four different sets of application-dependent
parameters: {l)6 = l,v = 300; {2)6=l,v = 200; (3)
6 = 1.5, V = 300; and (4) 8 = 1.5, v = 200 (the units
for 6 and v are meters and meters/s, respectively). For

all four cases considered, the radar-dependent parame-
ters and processor-dependent parameters were fixed at
the following values: R = 10^, R.^=2x 10*, A = 0.03,
oir = 0.3528, aa = 0.9068, and 7 = 94. These values
are derived in [3] based on a Mercury Rac-,e System
configured using SPARC processors.

Intuitively, case 1 represents the most computation-
ally demanding scenario of the four cases considered
- it has the largest platform velocity and the finest
desired SAR resolution. Case 4, on the other hand,
represents the other end of the spectrum ~ it is the
scenario with the smallest velocity and coarsest reso-
lution. Thus, it would be expected that case 1 have
the highest power consumption requirement and case
4 the lowest - this intuition is confirmed in the numer-
ical studies described next.

The formulated optimization problem was solved
using a routine from the Optimization Toolbox of
MATLAB called constr. This routine was executed
interactively (in MATLAB's command line mode) on
a Sun SparcStation, and the response time for solving
each optimization was almost immediate (less that one
second).

To illustrate the advantage associated with allowing
configurations to have two types of cards (i.e., hetero-
geneous configurations), optimizations were also con-
ducted in which only one card type is allowed (i.e., ho-
mogeneous configurations). Mathematicjilly, finding
an optimal homogeneous configuration corresponds to
setting the value of either Ci or C2 to zero and solving
the resulting optimization. Tables 1, 2, and 3 sum-
marize the results of the numerical studies that were
conducted. Table 1 shows the results for the optimal
heterogeneous configurations, in which both types of
cards are allowed (i.e., solving the optimization as de-
scribed in the previous subsection). Tables 2 and 3
show the results of optimal homogeneous configura-
tions, in which C2 and Ci, respectively, were defined
to be zero in the formulation. In all tables, the optimal
values of Sa, Ci, C2, and Fa as well as the correspond-
ing optimal value of the consumed power are tabulated
for each of the four cases considered.

Notice that optimal values of Sa and Fa given in
Table 2 are substantially less than those in Table 3.
This is logical considering that the memory to pro-
cessor ratio for the type 2 card is much higher than
that for the type 1 card, and memory requirements
grow linearly with the value of Sa (refer to Eq. (7)).
In reality, of course, a fractional number of cards can-
not be installed in an actual configuration. Thus, the
values for Ci and C2 would need to be rounded up to
the nearest integers so that the processor and memory
constraints are satisfied.

46

5 CONCLUSIONS

Table 1: Optimal Heterogeneous Configurations:
Type 1 and 2 Cards

case no.
iS:v)

Sa Ci C2 F^ Power
(in watts)

1
(1:300)

548 4.8 4.2 2048 94.7

2
(1 : 200)

548 2.1 5.3 2048 77.3

3
(1.5 :300)

357 1.5 1.4 1024 31.9

4
(1.5 : 200)

357 0.7 1.8 1024 26.0

Table 2: Optimal Homogeneous Configurations: Type
1 Cards Only

case no.
{S:v)

5„ Ci C2 Fa Power
(in watts)

1
(1 : 300)

259 11.0 0 2048 134.4

2
(1: 200)

175 10.5 0 2048 127.9

3
(1.5 : 300)

174 3.5 0 1024 42.8

4
(1.5 : 200)

118 3.3 0 1024 39.9

Table 3: Optimal Homogeneous Configurations: Type
2 Cards Only

case no.
(S-.v)

Sa Ci C2 Fa Power
(in watts)

1
(1 : 300)

2154 0 11.4 4096 109.7

2
(1 : 200)

1559 0 9.6 4096 91.8

3
(1.5 : 300)

1342 0 4.2 2048 40.2

4
(1.5 : 200)

975 0 3.4 2048 32.9

A formal approach for optimally configuring an em-
bedded computing platform for SAR processing was
introduced. The formulation allows the platform to be
configured using a combination of two types of cards.
The variables that are optimized include the number
of cards of each type and an FFT section size param-
eter. The advantage - in terms of minimizing con-
sumed power - of optimally utilizing two card types
(instead of restricting configurations to have only one
card type) was illustrated through numerical stud-
ies. Also, an intuitive correspondence between opti-
mal power consumption requirement and application-
dependent pareimeters (i.e., SAR image resolution and
platform velocity) was illustrated.

ACKNOWLEDGMENTS

The authors thank T. Einstein for his help in ex-
plaining some of the finer points of the computational
firamework assumed in this paper, which was origi-
nally described in [3]. We also thank A. G. Antonio
for sharing with us his expertise in radar systems and
SAR processing.

REFERENCES

[1] M. S. Bazaraa, H. D. Sherali, C. M. Shetty,
Nonlinear Programming: Theory and Algorithms,
Second Edition, John Wiley & Sons, New York,
NY, 1993.

[2] J. C. Curlander and R. N. McDonough, Synthetic
Aperture Radar: Systems and Signal Processing,
John Wiley & Sons, New York, NY, 1991.

[3] T. Einstein, "Realtime Synthetic Aperture Radar
Processing on the RACE Multicomputer," Appli-
cation Note 203.0, Mercury Computing Systems,
Inc., Chelmsford, MA, 1995.

[4] F. S. Hillier Jind G. J. Lieberman, Introduction
to Operations Research, Sixth Edition, McGraw-
Hill, New York, NY, 1995.

[5] A. V. Oppenheim and R. W. Schafer, Digital Sig-
nal Processing, Prentice-Hall, Englewood Cliffs,
NJ, 1975.

[6] "SHARC DSP Compute Nodes (3.3-Volt)," Mer-
cury Computing Systems, Inc., Chelmsford, MA,
Sept. 1995.

[7] J. S. Walker, Fast Fourier Transforms, Second
Edition, CRC Press, New York, NY, 1996.

47

Appendix B: Jeffrey T. Muehring and John K. Antonio, “Optimal Configuration of
Compute Nodes for Synthetic Aperture Radar Processing,” Proceedings of the
International Workshop on Embedded HPC Systems and Applications (EHPC ‘98), in
Lecture Notes in Computer Science 1388: Parallel and Distributed Processing, edited by
Jose Rolim, sponsor: IEEE Computer Society, Orlando, FL, USA, Apr. 1998, pp. 987-
993.

48

Optimal Configuration of Compute Nodes for Synthetic
Aperture Radar Processing

JeffreyT. Muehring and John K. Antonio

Deptartment of Computer Science, P.O. Box 43104, Texas Tech University,
Lubbock,TX 79409-3104

{muehring, antonio}@ttu.edu

Abstract Embedded systems often must adhere to strict size, weight, and
power (SWAP) constraints and yet provide tremendous computational
throughput. Increasing the difficulty of this challenge, there is a trend to utilize
commercial-off-the-shelf (COTS) components in the design of such systems to
reduce both total cost and time to market. Employment of COTS components
also promotes standardization and permits a more generalized approach to
system evaluation and design than do systems designed at the application-
specific-integrated-circuit (ASIC) level. The computationally intensive
application of synthetic aperture radar (SAR.) is by nature a high-performance
embedded application that lends itself to parallelization. A system performance
model, in the context of SWAP, is developed based on mathematical
programming. This work proposes an optimization technique using a
combination of constrained nonlinear and integer programming.

1 Introduction

This work focuses on modeling and optimizing the processor-memory relationships of
an embedded system for synthetic ^erture radar (SAR) processing. The hardware
computing platform of investigation is one constructed with commercial off-the-shelf
(COTS) components that are based on daughtercards and the compute-node concept.
A daughtercard consists of one or more compute nodes, where a compute node is
defined as an entity consisting of one or more processors, a block of shared memory,
and the requisite glue logic. Within the framework of the models developed,
optimization is performed on parameters such as the convolution section size and the
choice and number of daughtercards comprising the system.

Size, weight, and power (SWAP) constraints often motivate the maximization of
performance density for a given SAR system, especially in the case of unmanned
aerial vehicles (UAVs) or satellites, which often accommodate SAR systems. SAR in
itself is an ^proach to densifying a radar system by substituting a large degree of data
postprocessing for radar equipment with prohibitively high size, wei^t, and power
characteristics. Minimizing the power consumption of the compute platform used for

49

SARprocessing is the fundamental objective in this research (although with sufficient
parameter guidelines, size and weight could also be minimized using the same
^proach).

2 Fundamentals of SAR Processing

The specific mode of SAR investigated in this research is known as strlpmapplng. In
stripm^ping, successive radar pulses are transmitted and returned in the range
dimension, which is orthogonal to the line of flight. Each received series of pulses
from an individual transmitted pulse is then convolved with a reference kernel to
achieve range compression. The entire range dimension is processed at once in this
way. Detailed coverage of SAR and SAR processing is available in such works as [1,
2].

To create a two-dimensional SAR image, processing in the azimuth dimension is
also necessary. The azimuth dimension is parallel to the line of flight and is
conceptually infinite in length. Thus, processing of the entire azimuth vector, created
from stacked range-processed vectors, is infeasible. To counter this problem,
sectioned convolution is employed.

Sectioned convolution extracts a piece (or section) of the azimuth vector,
convolves it with a reference kernel as in the range dimension, and then discards a
portion of the result equal to the length of ^e reference kernel. Successi^ly
processed azimuth sections are then overl^ped (with overlaps equal to the discarded
kernel length) to form continuous vectors in the azimuth dimension. As is intuitive, a
large azimuth section length requires more memory than a small section.
Correspondingly, small azimuth sections require more total processing than do large
sections because the percentage of new data processed, which is not discarded, is low
(the size of the reference kernel being fixed).

A key point in this work is the exploitation of the section size and the concomitant
processor-memory tradeoff [3]. Different daughtercards are better suited for different
scenarios depending on the memory per processor ratio associated with the
daughtercard, which is largely dependent on the chosen section size. The
combination of the choices for the section size and number and types of daughtercards
employed greatly affects the overall performance and associated power consumption
of the computational platform.

3 Optimization Models

Two models are presented in this work, which address the problem of determining the
optimal parameter values for configuring the system. Both methods are based on
mathematical programming, which provides a method of formulating an optimization
problem given an objective and set of constraints [4, 5]. This work proposes
optimization techniques using a combination of constrained nonlinear and integer
programming.

50

The first model is based on the assumption of an ideal shared-memory system. It
treats all the memory contributed by individual daughtercards as a conglomerate
block, equally accessible by all processors located on all daughtercards. For a system
that is tightly predicated on the compute node with relatively high penalties for inter-
compute-node communication, this is an inaccurate oversimplification. However, it is
useful to initially investigate the optimization of the SAR system based on such an
assumption because it provides clear insight into the interrelationships between
variables and the effects of perturbation of other external parameters. In addition,
without constraints on the amount of local memory available to a processor, the ideal
memory-per-process or ratio can be derived from the optimization solution.

The second model removes the assumption of global shared memory and purposes
to address system configuration more realistically. With this goal comes an increase
in the complexity of the optimization formulation. The constraint set is modified to
ensure only local memory access by processors. To accomplish this optimization, a
mudi higher degree of integer programming is required than in the first model,
entailing greater computational intensity to perform the optimization. The benefits of
this second model include solutions that consist of a complete specification of how
system resources are to be utilized, whereas the first model only specifies which
resources are to be employed.

Parallelization of SAR processing involves the allocation of system resources for
either range or azimuth processing [6]. In the first model, range and azimuth
processors and memory are treated as aggregate requirements that somehow must be
met with an ^propriate number of daughtercards of each type. The second model,
however, specifies how many processors and how much memory on each compute
node per daughtercard is allocated for each function to prevent remote memory access
during computation. Note that a single compute node can perform both range and
azimuth processing, although each processor within a compute node must be
dedicated to a single task.

Numerical Studies

Test data is based on the availability of two different daughtercards. The first is
comprised of two compute nodes. Each compute node on this daughtercard consists
of three processors and a shared memory block of 16 MB. The second daughtercard
consists of a single compute node with two processors and 64 MB of memory. The
first daughtercard consumes 12.2 watts of power and the second 9.6 watts.
Throughput data for the significant operations involved in SAR processing is based
on SHARC processors [7].

MATLAB's constr function in the Optimization Toolbox was used to solve the
nonlinear constrained programming problem presented by both models. The
nonlinear nature of the problem results from the equations that express the required
system memory and number of processors, which are derived in [8]. The constr
implements a Sequential Quadratic Programming algorithm [9]. Integer
programming, the need for which results from the inherently discrete number of

51

processors per compute node and total compute nodes in a system, is implemented by
multiple optimizations over the feasible discrete permutations.

Figs. 1 through 3 illustrate the result of solving the optimization problem of me of
the models many times across a range of values for different platform \«locities and
desired resolutions. In eadi case, the platform velocity ranges from 50-400 m/s and
the resolution frwa 0.5-2.0 m.

The utility of optimization of the section size is demonstrated by comparison of
results produced by a heuristic used to determine section size, which defines the
section size to be equal to the kernel size. This section size definition and resultant
system configuration is designated as nominal. This wot finds that the nominal
section size, ahhough relatively efficient in processing, is too large fw most scenarios
because of the excessi^« memory requirements involved. The optimizations
performed show that forcing relatively inefficient processing with an associated
reduction in memory requirements is optimal if power is to be minimized. C^timal
section sizes thus often are found to be only abaction of the kernel size, ^itailingthe
processing of more old data that is to be discarded dian new data.

400 2

Fig. L Ratio of po^A^r consumption of the nominal section size to the oplimai sec[ion size.

52

400

velocity(m/^)

Fig. 2. Power consumption of the CN-constrained model.

Figure 1 shows the surface plot of the ratio of results obtained by employment of the
nominal section size to the optimized section size of the first model. As would be
expected, the optimized section size always results in equal or lower power
consumption than does the nominal section size. The optimized section size adjusts
to take advantage of unutilized processor and/or memory resources resulting from
changes in system requirements produced by changes in the velocity (axis labeled v)
and/or resolution (axis labeled d).

In both models, higher velocities and/or finer resolutions require more
daughtercards and thus more power. All other radar parameters such as wavelength,
range, range swath, and pulse width remain fixed at values representative of a real
system [6]. These trends are illustrated in Fig. 2, which represents the optimal power
consumption associated with the second model.

Fig. 3 displays the daughtercard configurations necessary for the optimal power
values represented in Fig. 2. A configuration is defined as the processor and memory
allocation (for range or azimuth processing) per compute node for a particular
daughtercard type. An optimal system configuration consists of one or two
daughtercard configurations. The two configurations are denoted as X and F, with the
subscipts 7", r, and a designating the daughtercard type (7), number of range
processors per compute node of that type daughtercard (r), and the number of azimuth
processors {a).

53

54

Acknowledgements

This work was supported by Rome Laboratory under Grant No. F30602-96-1-0098
and Defense Advanced Research Projects Agency (DARPA) under Contract No.
F30602-97-2-0297.

References

1. J. C. Curlander and R. N. McDonough, Synthetic Aperture Radar: ^^tem^ and Signal
/'TOcejjr;?^. John Wiley & Sons. New York. NY. 1991.

2. W. G. Carrara. R. S. Goodman, and R. M. Majewski. Spotlight Synthetic Aperture Radar:
Signal Proce^^ing Algorithms, Artech House, Boston, MA, 1995.

3. J. T.Muehringand J. K. Antonio.''Optimal Configuraion of Parallel Embedded Systems for
Synthetic Aperture Radar.^' Proceeding:^ of the /^ International Conference on Signal
Processing S: Applied Technology, October 1996. pp. 1189-1194.

4. F. S. Hillier and G. J. Lieberman. Introduction to Operations Research, Sixth Edition.
McGraw-Hill. New York. NY. 1995.

5. M. S. Bazaraa. H. D. Sherali. and C M. Shetty. Nonlinear Programming: Theory and
A Igorithms, Second Edition. John Wiley & Sons. New York. NY. 1993.

6. T. Einstein. ''Realtime Synthetic Aperture Radar Processing on the RACE Multicomputer.^'
ApplicationNote203.0. Mercury Computing Systems. Inc.. Chelmsford. MA. 1996.

7. "SHARC DSP Compute Nodes (3.3-Volt)." Mercuiy Computing Systems. Inc.. Chelmsford.
MA. Sept. 1995.

8. J. T. Muehring. Optimal Configuration of a Parallel Embedded System for Synthetic
Aperture Radar Processing, M. S. Thesis. Texas Tech University. 1997
(http://hpcl.cs.ttu.edu/darpa/opt_conii g/thesis. pdf)

9. P. E. Gill. W. Murray, and M. H. Wright. Practical Optimization, Academic Press.
London. 1981.

55

Appendix C: Jack M. West and John K. Antonio, “Simulation of the Communication
Time for a Space-Time Adaptive Processing Algorithm on a Parallel Embedded System,”
Proceedings of the International Workshop on Embedded HPC Systems and Applications
(EHPC ‘98), in Lecture Notes in Computer Science 1388: Parallel and Distributed
Processing, edited by Jose Rolim, sponsor: IEEE Computer Society, Orlando, FL, USA,
Apr. 1998, pp. 979-986.

56

Siiniilatioii of the Comtnuiiicatioii Time for a Space-Time
Adaptive Processing Algorithm on a Parallel Embedded

System

Jack M. West and John K. Antonio

Department of Computer Science, P.O. Box 43104, Texas Tech University, Lubbock^TX
79409-3104

{west, antonio}@ttu.edu

Extended Abstract

The focus of this work involves the investigation of parallelization and perfonnance
improvement for a class of radar signal processing techniques known as space-time
ad^tive processing (STAP). STAP refers to an extension of ad^tive antenna signal
processing methods that operate on a set of radar returns gathered from multiple
elements of an antenna array over a specified time interval. Because the signal
returns are composed of range, pulse, and antenna-element samples, a three-
dimensional (3-D) cube naturally represents STAP data. Typical STAP data cube
processing requirements range from 10-100 giga floating point operations per second
(Gflops). Imposed real-time deadlines for STAP ^plications restricts processing to
parallel computers composed of numerous interconriected compute nodes (CNs). A
CNhas one or more processors connected to ablock of shared memory.

Developing a solution to any problem on a parallel system is gerierally not a trivial
task. The overall performance of many parallel systems is highly dependent upon
network contention. In general, the moping of data and the scheduling of
communications impacts rietwork contention of parallel architectures. The primary
goals of many ^plications implemented on parallel architectures are to reduce
latency and minimize interprocess or communication time (IPC) while maximizing
througlput. It is indeed necessary to accomplish these objectives in STAP processing
environments. In most STAP implementations, there are three phases of
computations, one for each dimension of the data cube (i.e., range, pulse, and
channel). To reduce computational latency, the processing at each phase must be
distributed over multiple CNs using a single program multiple data (SPMD)
^proach. Additionally, prior to each processing phase, the data set must be
partitioned in a fashion that attempts to equally distribute the computational load over
the available CNs. Because each of the three phases process a different dimension of
the data cube, the data must be redistributed to form contiguous vectors of the next
dimension prior to the next processing phase. This redistribution of data or
distributed ''comer-turn" requires IPC. Minimizing the time required for
interprocess or communication helps maximize STAP processing efficiency.

Driven by the need to solve complex real-time applications that require tremendous
computational bandwidths such as STAP algorithms, commercial-off-the-shelf

57

(COTS) embedded hi^-perfomiance computing systems that emphasize upward
scalabihty have emerged in the parallel processing environment. In a message
passing parallel system, CNs are connected with each other via a common data
communication fabric or intercoruiection rietwork. For the purposes of discussion and
illustration, assume that a crossbar with six bidirectional channels is the building
block for the intercoruiection network. Each of the six input/output channels is
bidirectional, but may only be driven in one direction at a time. The versatility of the
six-port crossbar allows for the interconnect to be configured into a number of
different network topologies, including two-dimensional (2-D) and 3-D meshes, 2-D
and 3-D rings, grids, and Clos networks. However, the most common configuration is
a fat-tree, where the crossbars are connected in a parent-child fashion. In a fat-tree
configuration, which is the configuration assumed in this p^er, each crossbar has two
parent ports and four child ports. The fat-tree architecture helps alleviate the problem
of communication bottlenecks at hi^ levels of the tree (present in conventional tree
architectures) by irjcreasing the number of effective parallel paths between CNs.
Unfortunately, the addition of multiple paths between CNs increases the complexity
of the communication pattern in ^plications such as STAP that involve data
redistribution phases.

Additional complexity emerges when each CN is composed of more than one
processor or compute element (CE) configured with the shared-memory address space
of the CN. In a system with one CE per CN, flie communication pattern during
distributed corrier-turn phases is very regular and we 11-understood (i.e., a matrix
transpose operation implemented in parallel). However, the overall complexity of
both the moping and scheduling of communications irjcreases in systems where the
CNs contain more than one CE, for two reasons. First, the communication pattern can
be less regular. Second, the message sizes are not uniform.

Two m^or challenges of implementing STAP algorithms on embedded high-
performance systems are determining the best method for distributing the 3-D data set
across CNs (i.e., the mapping strategy) and the scheduling of communication prior to
each phase of computation. At each of the three phases of processing, data access is
either vector-oriented along a data cube dimension or a plane-oriented combination of
two data cube dimensions. During the processing at each phase, the contiguous
vectors along the dimension of interest are distributed among the CNs for processing
in parallel. Additionally, each CE may be responsible for processing one or more
vectors of data during each phase. Before processing of the next phase can take place,
the data must be redistributed among the available CNs to form contiguous vectors of
the next dimension. Determining the optimal schedule of datatransfers during phases
of data repartitioning on a parallel system is a formidable task. The combination of
these two factors, data moping and communication scheduling, provides the key
motivation for this work.

One approach to data set distribution in STAP ^plications is to partition the data
cube into sub-cube bars (see Fig. 1). Each sub-cube bar is composed of partial data
samples from two dimensions, while preserving one whole dimension of the data-
cube. After performing the necessary computations on the current whole dimension,
the data vectors must be redistributed to form contiguous sub-cube bars of the next
dimension to be processed. By implementing a sub-cube bar partitioning scheme,
IPC between processing stages is isolated to clusters of CNs and not the entire system

58

(i.e., the required data exchanges occur only between CNs in the same logical row or
column).

To illustrate the impact of moping, consider the two examples shown in Fig. 2 and
Fig. 3. For these two examples, assume that the parallel system is composed of four
CNs, with each having three CEs, and connected via one six-port crossbar (see Fig 4).
Additionally, the number on each sub-cube bar indicates the processor to which the
sub-cube bar is initially distributed for processing. Fig. 2 illustrates a moping
scheme where the sub-cube bars are raster-numbered along the pulse dimension. In
contrast, the sub-cube bars are raster-numbered along the channel dimension in Fig. 3.
As illustrated in the two examples, the initial mapping of the data prior to pulse
compression affects the number of required communications during the data
redistribution phase prior to Doppler filtering. In the case where the data cube is
raster-numbered along the pulse dimension, six messages, totaling 20 units in size,
must be transferred through the interconnection network. By implementing the
moping scheme in Fig. 3, the number of required data transfers increases to twelve,
while the total message size expands to 36 units. For this small example, the initial
moping of the sub-cube bars greatly affects the communication overhead that occurs
during phases of datarepartitioning.

To illustrate the impact of scheduling communications during data repartitioning
phases, consider the problem depicted in Fig. 5, which is the same problem as shown
in Fig. 3. The left-hand portion of the figure shows the current location of the STAP
data cube on the given processors after pulse compression. The data cube on the
right-hand side of the figure illustrates the sub-cube bars of the data cube after
repartitioning. The coloring scheme indicates the destination CN of the data for the
data prior to the next processing phase. If any part of the sub-cube bar is a different
color than its current processor color in the left-hand data cube, the data must be
transferred to the conesponding colored destination node. In this example, the
repartitioning phase involves transferring six data sets through the interconnection
network. If the six messages were sequentially communicated (i.e., no parallel
communication) through the network, the completion time {Tc} would be the sum of
the length of each message, which totals 20 network cycles. If two or more messages
could be sent through the network concurrently, then the value of Tc would be
reduced (i.e., below 20).

Scheduling the communications for each of the six messages through the
interconnection network greatly affects the overall performance (even for this small
system consisting of only one crossbar). Fig. 6 shows the six messages, labeled A
through F, in the outgoing first-in-first-out (FIFO) message queues of the source CNs.
Each message's destination is indicated by its color code. The number in parenthesis
by each message label represents the relative size of the message. The minimal
achievable communication time is dependent upon the CN with the largest
communication time of all outgoing and incoming messages. For this example, the
minimum possible communication time is the sum of all outgoing and incoming
messages on the CNs having two messages, which equals fourteen message units.
The actual communication time, Tc, that would result from this example with the
given message queue orderings (i.e., schedule) is 17 units. However, changing the
ordering of the messages in the outgoing queues will yield an optimal schedule of

59

messages. The message queues in Fig- 7 are identical to those in Fig. 6 except the
positions of messages C and Fhave been swqjped in the outgoing queue. Swapping
the ordering of the messages on the green CN allows for an increase in the number of
messages that can be communicated in parallel. For this new ordering of queued
messages, the actual completion time achieves the optimal completion time of
fourteen units. The purpose of this example is to illustrate that the order (i.e., the
schedule) in which the messages are queued for transmission can impact how much
(if any) concurrent communication can occur. The method used to decompose and
m^ the data onto the CNs will also impact the potential for concurrent
communication.

The current research involves the design and implementation of a network
simulator that will model the effects of data moping and communication scheduling
on the performance of a STAP algorithm on an embedded high-performance
computing platform. The purpose of the simulator is not to optimally solve the data
moping and scheduling problems, but to simulate the different data m^pings and
schedules and resultant performance. Thus, the simulator models the effects
associated with how the data is m^ped onto CNs, composed of more that one CE, of
anembeddedparallel system, and how the data transfers are scheduled.

The network simulator is designed in an object-oriented paradigni and
implemented in Java using Borland's IBuilder Professional version 1.0. Java was
chosen over other programming languages because of its added benefits. First, Java
code is portable. This feature allows the simulator to run on various platfomis
regardless of the architecture and operating system. Additionally, Java can be used to
create both ^plications (i.e., a program that executes on a local computer) and
^plets (i.e., an ^plication that is designed to be transmitted over the Internet and
executed by a Java-compatible web browser). Third, Java source code is written
entirely in an object-oriented paradigm, which is well-suited for the simulator's
design. Fourflij Java provides built-in support for multithreaded programming.
Finailys Java development tools, like Borland's JBuilder, provide a set of tools in the
Abstract Window Toolkit (AWT) for visually designing and creating grq^hical user
interfaces (GUIs) for ^plications or ^plets.

The simulator's functionality is encompassed by a friendly GUI. The main user
interface of the simulator provides a facility for the user to enter the corresponding
values of the three dimensions of a given STAP data cube and the number of CNs to
allocate to processing the STAP data cube using an element-space post-Doppler
heuristic and a sub-cube bar partitioning scheme. After providing the problem
definition infonnation, the user selects an initial moping that includes a set of
predefined m^pings (e.g., raster-numbering along the pulse dimension, raster-
numbering along the channel, etc.), a random moping, or a user-definable
customized moping. Furthennore, the user selects the ordering of the messages in
the outgoing queues from a predefined set of scheduling algorithms (e.g., short
messages first, longest messages first, random, custom, etc). After providing the
necessary input, the network simulator simulates the defined problem and produces
the timing results from both phases of datarepartitioning. The level of detail that the
simulator models could be defined as a medium- to fine-grairied simulation of the
interconnection network. The simulator assumes the rietwork is circuit switched, and
the contention resolution scheme is based on a port number tie-breaking mechanism

60

61

62

63

64

Appendix D: Jack M. West and John K. Antonio, “A Genetic Algorithm Approach to
Scheduling Communications for a Class of Parallel Space-Time Adaptive Processing
Algorithms,” Proceedings of the 5th International Workshop on Embedded/Distributed
HPC Systems and Applications (EHPC 2000), in Lecture Notes in Computer Science,
IPDPS 2000 Workshops, sponsor: IEEE Computer Society, Cancun, Mexico, May 2000,
pp. 855-861.

65

A Genetic Algorithm Approach to ScheduHng
Communications for a Class of Parallel Space-Time

Adaptive Processing Algorithms

Jack M. West and John K Antonio

School of Conputer Science
University of Oldahoma

200 Felgar Street
Norman. OK 73019

Phone: (405)325-4624
{west, antonio}@ou.edu

Abstract. An inportant consideration in the maximisation of performance in
parallel processing systems is scheduling the communication of messages
during phases of data movement to reduce network contention and overall
communication time. The work presented in this p^er focuses on off-line
optimisation of message schedules for a class of radar signal processing
techniques know as space-time ad^tive processing on a parallel embedded
system. In this worlc. a gene tic-algorithm-based ^proach for optimizing the
scheduhng of messages is introduced. Prehminary results indicate that the
proposed genetic approach to message scheduhng can provide significant
decreases in the communication time.

Introduction and Background

For an qjplication on a parallel and embedded system to achieve required
performance given tight system constraints, it is important to efficiently mqj the tasks
and/or data of the application onto the processors to the reduce inter-processor
communication traffic. In addition to mqjping tasks efficiently, it is also important to
schedule the communication of messages in a manner that minimizes network
contention so as to achieve the smallest possible communication time.

Moping and scheduling can both - either independently or in combination - be
cast as optimization problems, and optimizing mapping and scheduling objectives can
be critical to the performance of the overall system. For parallel and embedded
systems, great significance is placed on minimizing execution time (which includes
both computation and communication components) and/or maximizing throughput.

The work outlined in this paper involves optimizing the scheduling of messages for
a class of radar signal processing techniques known as space-time adqjtive processing
(STAP) on a parallel and embedded system. A genetic algorithm (GA) based
qjproach for solving the message-scheduling problem for the class of parallel STAP
algorithms is proposed and preliminary results are provided. The GA-based
optimization is performed off-line, and the results of this optimization are static

66

67

68

Genetic Algorithm Metliodology

A GA is a population-based model that uses selection and recombination operators to
generate new sample points in the solution space [3]. A GA encodes a potential
solution to a specific problem on a chromosome-like data structure and applies
recombination operators to these structures in a manner that preserves critical
information. Reproduction opportunities are qjplied in such a way that those
chromosomes representing a better solution to the target problem are given more
chances to reproduce than chromosomes with poorer solutions. GAs are a promising
heuristic qjproach to locating near-optimal solutions in large search spaces [3]. For a
completediscussionof GAs, the reader is referred to [1,3].

Typically, a GA is composed of two main components, which are problem
dependent: the encoding problem and the evalvation fimction. The encoding problem
involves generating an encoding scheme to represent the possible solutions to the
optimization problem, hi this research, a candidate solution (i.e., a chromosome) is
encoded to represetit valid message schedules for all of the CNs. The eyalvation
function measures the quality of a particular solution. Each chromosome is associated
with a fitness value, which in this case is the completion time of the schedule
represented by the given chromosome. For this research, the smallest fitness value
represents the better solution. The 'Titness" of a candidate is calculated here based on
its simulated performance, hi previous work [6, 7], a software simulator was
developed to model the communication traffic for a set of messages on the Mercury
RACEway network. The simulation tool is used here to measure the 'Titness" (i.e., the
completion time) of the schedule of messages represented by each chromosome.

Chromosomes evolve through successive iterations, called generations. To create
the next generation, new chromosomes, called offspring, are formed by (a) merging
two chrcvnosotnes from the current population together using a crossover operator or
(b) modifying a chromosome using a mutation operator. Crossover, the main genetic
operator, generates valid offspring by combining features of two parent chromosomes.
Chromosomes are combined together at a defined crossover rate, which is defined as
the latio of the number of offspring produced in each generation to the population
size. Milation, a background operator, produces spontaneous random changes in
various chromosomes. Mutation serves the critical role of either replacing the
chromosomes lost from the population during the selection process or introducing
new chromosomes that were not present in the initial population. The mutation rate
controls the rate at which new chromosomes are introduced into the population. In
this pqjer, results are based on the implementation of a position-based crossover
operator and an insertion mutation operator, refer to [1] for details.

Selection is the process of keeping and eliminating chromosomes in the population
based on their relative quality or fitness, hi most practices, a roulette wheel qjproach,
either rank-based or value-based, is adopted as the selection procedure, hi a ranked-
based selection scheme, the population is sorted according to the fitness values. Each
chromosome is assigned a sector of the roulette wheel based on its ranked-value and
not the actual fitness value, hi contrast, a value-based selection scheme assigns
roulette wheel sectors proportional to the fitness value of the chromosomes, hi this
paper, a ranfced-hased selection scheme is used. Advantages of rank-based fitness

69

assignment is it provides unifonn scaling across chromosomes in the population and
is less sensitive to probability-based selections, refer to [3] for details.

4 Numerical Results

hi the experiments reported in this section, it is assumed that the Mercury
multicomputer is configured with 32 PowerPC compute nodes. For range processing,
Doppler filtering, and adaptive weight computation, the 3-D STAP data cube is
mapped onto the 32 processing elements based on an 8x4 process set (i.e., 8 rows
and 4 columns), refer to [2, 6]. The strategy implemented for CN assignment in a
process set is raster-order from left-tonight starting with row one and column one for
all process sets. (The process sets not only define the allocation of the CNs to the data
but also the required data transfers during phases of data redistribution.) The STAP
data cube consists of 240 range bins, 32 pulses, and 16 antenna elements.

For each genetic-based scenario, 40 random schedules were generated for the
initial population. The poorest 20 schedules were eliminated from the initial
population, and the GA population size was kept a constant 20. The recombination
operators included a position-based crossover algorithm and an insertion mutation
algorithm. A ranked-based selection scheme was assumed with the angle ratio of
sectors on the roulette wheel for two adjacently ranked chromosomes to be 1 +1 / P,
where P is the population size. The stopping criteria were: (1) the number of
generations reached 500; (2) the current population converged (i.e., all the
chromosomes have the same fitness value); or (3) the current best solution had not
improved in the last 150 generations.

Figure 3 shows the simulated completion time for three genetic-based message
scheduling scenarios for the data transfers required between range and Doppler
processing phases. Figure 4 illustrates the simulated completion time for the same
three genetic-based message scheduling scenarios for the data transfers required
between Doppler and adaptive weight processing phases, hi the first genetic scenario
(GA 1), the crossover rate (Pxova) is 20% and the mutation rate (Pmui) is 4%. For GA
2, Plover is 50% and P^^, is 10%. For GA 3, P^^ver is 90% and P^^, is 50%. Figures 3
and 4 provide preliminary indication that for a fixed mqjping the genetic-algorithm-
based heuristic is capable of improving the scheduling of messages, thus providing
improved performance. All three genetic-based scenarios improve the completion
time for both communication phases, hi each phase, GA 2 records the best schedule
of messages (i.e., the smallest completion time).

70

71

5. Conclusion

In conclusion, preliminary data demonstrates that off-line GA-based message
scheduling optimization can provide improved performance in a parallel system.
Future work will be conducted to more completely study the effect of changing
parameters of the GA, including crossover and mutation rates as well as the methods
used for crossover and mutation. Finally, future studies will be conducted to
determine the performance improvement between a randomly selected scheduling
solution and the one determined by the GA. hi Figures 3 and 4, the improvements
shown are conservative in the sense that the initial generations' performance on the
plots represents the best of 40 randomly generated chromosomes (i.e., solutions). It
will be interesting to determine improvements of the GA solutions with respect to the
''average" and ''worst" randomly generated solutions in the initial population.

Acknowledgements

This work was supported by DARPA under contract no. F30602-97-2-0297.

References

1. M. Gen and R. Cheng, Genetic Algonthms (md Engineering Design^ John Wiley & Sons,
Inc., New York, NY,1997.

2. M. F. Sl^labrin and T. H. Einstein, "STAP Processing on a Multiconputer: Distribution of
3-D Data Sets and Processor Allocation for Optimum Interprocess or Communication,"
Proceedings of the Adaptive Sensor Array Processing (ASAP) Workshop ^M^ioh 1996.

3. L. Wang, H. I Siegel, V. P. Roychowdhury, and A. A. Maciejewsld. "Task Matching and
Scheduling in Heterogeneous Conputing Environments Using a Genetic-Algorithm-Based
Approach," Journal of Parallel and Distributed Computing, Special Issue on Parallel
Evolutionary Confuting, Vol. 47, No l,pp. S-22, Nov. 25,1997.

4. The RACE Multiconputer, Hardware Theory of Operation: Processors, I/O Interface, and
RACEway Interconnect, Volume I, ver. 1 3.

5. I Ward, Space-Time Adaptive Processing for Airborne Radar, Technical Report 1015,
Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, MA, 1994.

6. I M. West, Simulation of Commimication Time for a Space-Time Adaptive Processing
Algorithm Implemented on a Parallel Embedded System^ Master^s Thesis, Conputer
Science, Texas Tech Universiiy, 199S.

7. I M. West and I K. Antonio, "Simulation of the Communication Time for a Space-Time
Adaptive Processing Algorithm on a Parallel Embedded System," Proceedings of the
International Workshop on Embedded HPC Systems and Applications (EHPC ^98)^ in
Lecture Notes in Computer Science 1388: Parallel and Distributed Processing, edited by
Jose Rohm, sponsor: IEEE Conputer Society, Orlando, FL, USA, Apr. 199S, pp. 979-9S6.

72

Appendix E: Jack M. West and John K. Antonio, “A Genetic-Algorithm Approach to
Scheduling Communications for Embedded Parallel Space-Time Adaptive Processing
Algorithms,” Journal of Parallel and Distributed Computing, Vol. 62, No. 9, Sept. 2002,
pp. 1386-1406.

73

Journal of Parallel and Distributed Computing 62. 1386-1406 (2002)
doi:10.1006/jpdc.2002.1852

A Genetic-Algorithm Approach to
Scheduling Communications for
Embedded Parallel Space-Time
Adaptive Processing Algorithms

Jack M. West and John K. Antonio'

'ter Science, University of Oklahoma, 200 Felgar Street, Norman, Oklal
E-mail: west(a ou.edu; antoniotoou.edu

Received March 29. 2000; accepted January 29. 2002

Computational efficiency is of great significance for liigh-performance

embedded applications. The work here develops and evaluates a genetic-

algorithm-based (GA-based) optimization technique for the scheduling of
messages for a class of parallel embedded signal processing techniques known

as space-time adaptive processing (STAP). The GA-based optimization is

performed off-line, resulting in static schedules for the compute nodes of the

parallel system. These static schedules are utiUzed for the on-line implementa-

tion of the parallel STAP application. The primary motivation and

justification for devoting significant off-line effort to solving the formulated

scheduling problem is the resulting reduction of hardware resources required

for the actual on-line impleinentation. Numerical studies illustrate that

reductions in hardware requirements of around 50% can be achieved by

employing the results of the proposed scheduling techniques. This reduction in

hardware requirement is of critical importance for STAP, which is typically an

airborne application in which the size, weight, and power consumption of the

computational platform are severely constrained. (2{>()2 Kkcvici science ILISAI

Key Words: embedded processing; genetic algorithms; hardware minimiza-

tion; mapping; scheduling.

1. INTRODUCTION

For an application implemented on a parallel and embedded system to achieve

required performance, it is important to effectively map the tasks of the application

onto the processors in a way that reduces the volume of inter-processor

communication traffic. It is also important to schedule the communication of

All rights reserved.

74

, STAP co^1^niNIt•ATlo^s

messages in a manner that minimizes network contention so as to achieve the
smallest possible communication times.

Mapping and scheduling can both—either independently or in combination—be
cast as optimization problems, and optimizing mapping and scheduling objectives
can be critical to the performance of the overall system. For embedded applications,
great importance is often placed on determining minimal hardware requirements
that can support a number of different application scenarios. This is because there
are typically tight constraints on the amount of hardware that can be accommodated
within the embedded platform. Using mappings and schedules that minimize the

efficiency of the parallel system, thus leading to reduced hardware requirements for a
given set of application scenarios.

The work outlined in this paper focuses on using a genetic-algorithm-based (GA-
based) approach to optimize the scheduhng of messages for a class of parallel radar
signal processing algorithms known as space-time adaptive processing (STAP).
STAP is an adaptive signal processing method that simultaneously combines
the signals received from multiple elements of an antenna array (the spatial
domain) and from multiple pulses (the temporal domain) of a coherent processing
interval [6]. The focus of this research assumes that STAP is implemented using an
element-space post-Doppler partially adaptive algorithm, refer to Appendix A and
[6, 7] for details.

STAP involves signal processing methods that operate on data collected from a set
of spatially distributed sensors over a given time interval. Signal returns are
composed of range, pulse, and antenna-element digital samples; consequently, a
three-dimensional (3-D) data cube naturally represents the STAP data. A distributed
memory multiprocessor machine is assumed here for the parallel STAP implementa-
tion. The core processing requirement proceeds in three distinct phases of
computation, one associated with each dimension of the STAP data cube. After
each phase of processing, the data must be re-distributed across the processors of the
machine, which represents the communication requirements of this parallel
application. Thus, there are two primary phases of inter-processor data commu-
nication required: one between the first and second phases of processing and the
other between the second and third phases of processing. After all three phases of
processing are complete for a given STAP data cube, a new data cube is input into
the parallel machine for processing.

A proposed GA-based approach is used to solve the message-scheduling problem
associated with each of the two phases of inter-processor data communication. This
GA-based optimization is performed off-line, and the results of this optimization are
static schedules for the compute nodes of the parallel system. These static schedules
are used within the on-line parallel STAP implementation. The results of the study
show that significant improvements in communication time performance are possible
using the proposed approach for scheduling. It is then shown that these
improvements in communication time translate to reductions in required hardware
for a class of scenarios. Performance of the mappings and schedules are evaluated
based on a Mercury RACE" network simulator developed in [7] and described in
Appendix C.

75

76

A GA } OR SCHEDULING I'ARALLEL STAP COMMUNICATIONS

phase of processing. The process sets not only define the allocation of CNs to data
but also the required data transfers during phases of data redistribution. To
illustrate, let 7; represent the process set for range processing and T^ define the
process set for processing in the pulse dimension. The process sets Ti and T2 define
the required message traffic to form contiguous vectors in the pulse dimension after
range processing is complete. The row and column dimensions of Ti and T2 affect the
communication pattern that is induced for the first communication phase. Similarly,
the row and column dimensions of Tj and T:, affect the volume and pattern of the
second communication phase. Refer to Appendix B for a more detailed explanation
of how mapping choices impact communication requirements.

The possible values for the row and column dimensions of a given process set,
denoted by (R, C), is defined by the following:

where p is the number of processors (i.e., the number of CNs). A complete mapping
is defined by specifying the dimensions of all three process sets; thus, the number of
complete data cube mappings is given by

WJ)\U = p}t (2)

To illustrate, for p = \2 there are six possible process sets: {(1,12),(2,6),
(3,4), (4,3), (6,2), (12,1)}. Because a process set must be applied to each of the
three dimensions of the data cube, there are a total of 6'' = 216
possible mapping alternatives. It is noted that the number of possible schedules
associated with a single mapping is generally much larger than the number of
mappings. In Section 3, a GA-approach to optimal scheduling for a given mapping is
developed.

Based on the class of mappings defined above, an objective function is developed
next for defining the merit of individual mappings. The mapping objective function
quantifies the quality of the mapping associated with a collection of three process
sets. The message size and the distance each message must travel (i.e.. the number of
crossbar connections required for transmission) are key parameters of the objective
function. The process sets T\ and Tj induce message traffic requirements as do the
process sets Tj and T^. The induced message traffic produced by process sets T\ and
Ti is quantified using the following expression:

where S\ represents the set of all messages induced by process sets T\ and Tj, mij
defines a message from CN / to CN j, l/w,,] is the message size, dij is the distance the
message traverses from source to destination. By combing the above expression with
a similar expression for the message traffic between process sets 7^ and Fi, an
objective measure of overall mapping quality is defined as

77

78

AGA FOR SCHtDULING I'ARAL , STAP COMMUNICATIONS

3. GENETIC-ALGORITHM APPROACH TO MESSAGE SCHEDULING

A GA is a population-based model that uses selection and recombination
operators to generate new sample points in a solution space [5]. A GA encodes a
potential solution to a specific problem on a chromosome-like data structure and
applies recombination operators to these structures in a manner that preserves
critical information. Reproduction opportunities are applied in such a way that
those chromosomes representing a better solution to the target problem are given
more chances to reproduce than chromosomes with poorer solutions. GAs are a
promising heuristic approach to locating near-optimal solutions in large search
spaces [5]. For a complete discussion of GAs, the reader is referred to [2, 5, 8].

Typically, a GA is composed of two main components, which are problem
dependent: the encoding problem and the evaluation function. The encoding problem
involves generating an encoding scheme to represent the possible solutions to the
optimization problem. In this research, a candidate solution (i.e., a chromosome) is
encoded to represent valid message schedules for all of the CNs. The evaluation
function measures the quality of a particular solution. Each chromosome is
associated with a fitness value, which in this case is the simulated completion time
of the schedule represented by the given chromosome. For this research, smaller
completion times indicate better fitness. The network simulator described in
Appendix C is used to determine the communication time of the schedule encoded
by each chromosome.

Chromosomes evolve through successive iterations, called generations. A new
generation is created when new chromosomes, called offspring, are formed by (a)
merging two chromosomes from the current population together using a crossover
operator or (b) modifying a chromosome using a mutation operator. Crossover, the
main genetic operator, generates valid offspring by combining features of two parent
chromosomes. Chromosomes are combined together at a defined crossover rate,
which is defined as the ratio of the number of offspring produced in each generation
to the population size. Mutation, a background operator, produces spontaneous
random changes in various chromosomes. Mutation serves the critical role of either
replacing the chromosomes lost from the population during the selection process or
introducing new chromosomes that were not present in the initial population. The
mutation rate controls the rate at which new chromosomes are introduced into the
population. In this paper, results are based on the implementation of a position-
based crossover operator and an insertion mutation operator, refer to [2] for details.

Selection is the process of ordering (i.e., ranking) chromosomes in the population
by their fitness values from the best to worst. There are two fundamental paradigms
for implementing the selection process: (1) value-based roulette wheel selection
scheme and (2) rank-based roulette wheel selection scheme. In a value-based scheme,
the probability of a chromosome being selected for reproduction is proportional to
its fitness value. Each chromosome is allocated a sector on a roulette wheel
proportional to its fitness value. To better illustrate the value-based approach to
selection, let P denote the population size and A, denote the angle allocated to the /th
chromosome. In addition, let /; represent the fitness of the ;th chromosome, and let
the average fitness of the population be /avg. In this selection scheme, the /th

79

chromosome is allocated a sector of the roulette wheel with area proportional to
/ivg// [5]. This proportionality assumes the best chromosome has the smaller fitness
value; therefore, it is allocated a larger slice of the roulette wheel.

In a value-based scheme, chromosomes with the same fitness values have the same
probabihty of being selected. In contrast, chromosomes in a rank-based scheme that
have the same fitness value are arbitrarily ranked among themselves. The 0th ranked
chromosome is the fittest and has the sector with the largest angle A^; the (P - l)th
ranked chromosome is the least fit and has the smallest angle /l,,_i [5]. The ratio
between two adjacent chromosomes is a constant R = Ai/Ai+\. If the 360' of the
roulette wheel are normalized to one, then

A - RP ' ' x-^-*^-^ (5)

where ^> 1, 0<(<P, and 0<^,<1 [5].
The selection step involves the generation of P uniformly distributed random

numbers ranging from zero to one. Each number maps to a location on the roulette
wheel, thereby selecting the chromosome allocating that sector of the wheel. Because
better solutions occupy larger portions of the wheel than poorer solutions, the better
candidates have a higher probability of selection. This selection process produces P
candidates for recombination and mutation operations, where multiple copies of the
same candidate are permissible. For this research, the size of the next generation is
always kept a constant P, and a rank-based selection scheme is used. Advantages of
rank-based fitness assignment is, it provides uniform scaling across chromosomes in
the population and is less sensitive to probability-based selections, refer to [5] for
details.

As successive generations emerge in the GA heuristic, it is important to compare
the best solution found thus far to the best solution in the current population. The
best solution is updated whenever the fitness value (i.e., the completion time) of a
particular candidate is smaller than the current best solution. After evaluating and
possibly updating the best solution, the stopping criteria are evaluated. The
algorithm terminates if one of the stopping criteria are true, otherwise the algorithm
continues by performing the states of selection, crossover, and mutation.

The optimization of schedules during phases of data redistribution between CNs
on the parallel system can be viewed as a problem with discrete objects (i.e., the
source and destination locations of the messages are fundamental to the encoding of
the chromosomes). Optimization problems involving discrete data sets are called
combinatorial optimization problems. In traditional genetic-based algorithms,
chromosomes are represented as binary strings. However, this representation is
not well suited for all combinatorial problems. The most natural representation, and
the one implemented in this research, is a permutation representation. In this
approach, messages are listed in the order in which they appear in each CN queue by
a decimal number representing the destination node of the message. This
representation (see Fig. 3) is called path representation.

The illustrative example in Fig. 3 shows four CNs with associated message queues.
The boxes represent a message, and the number in the box indicates the destination

80

81

82

83

84

A GA KOR SCHEDL^LING PARALLEL STAP COMMUNICATIONS

 Optimal 8 CN

 Optimal 16 CN

12 16 20 24 28 32 36

for the three mapping/scheduling scenarios of Fig. 7. The oj

16-processor systems are indicated with dashed lines.

computation and communication,

(ing; scheduling for 8-processor and

benchmark provided by Mitre [1]. Scenario 1 communication time corresponds to
the best time reported by the GA optimization utilizing the best mapping for the
given number of assigned processors. The communication completion times for a
baseline scheduling of transfers given a typical mapping is illustrated by scenario 2,
and communication scenario 3 consists of a typical mapping and a poor schedule.
The illustration shows a distinctive variation in the communication scenarios'
completion times. Additionally, note that as the number of processors increases, the
computation time decreases.

To better visualize the affect data mapping and scheduling have on hardware
requirements, the computation time can be added to each of the three communica-
tion scenarios shown in Fig. 7; the resulting completion times are depicted in Fig. 8.
The intersection of optimal 8 processor dashed line and scenario 1 line represent the
optimal mapping and scheduling for an 8 processor system. In this case, the
completion time is around 140 ms; however, if scenario 3 was used the completion
time would be closer to 170 ms per data cube. Obviously with the optimal mapping
and scheduhng (scenario 1), more data cubes per unit time can be processed; thus, in
a unit of time more data cubes can be processed than with scenario 2 or 3. Note also
from the figure that if a poor mapping/scheduling strategy (scenario 3) were utilized,
then 11 or 12 processors would be required in order to match the performance of the
optimally mapped (scenario 1) 8 processor system. This represents a potential
reduction in hardware requirements of around 50% by utilizing the overall optimal
mapping and scheduling scheme.

An optimal 16 processor system, which includes optimal data mapping and
scheduling, can achieve the same performance as a 24 processor system with a poor

85

WEST AND ANTONIO

mapping and scheduling. As a result, if a poor mapping and scheduling was selected
for a 24 processor system, the same performance could be realized with an optimal
16 processor configuration. The overall SWAP requirements for a 16 processor
system would be less than a 24 processor system. Therefore, by optimizing the
mapping of data and the scheduling of messages the SWAP requirements can be
reduced.

This example illustrates that by utilizing the optimal mapping and scheduling
methodologies of Sections 2 and 3, hardware savings of 50% and more can be
realized when compared to sub-optimal solutions to the mapping and scheduling
problems. Because of limitations on the size of problems that could be executed/
simulated, systems up to a size of only 32 processors were investigated. However,
from the trends observed in overall completion times, it appears that even more
significant savings in hardware/power requirements are realizable for STAP
applications that require substantially larger systems having hundreds or even
thousands of processors.

4.3. Summary of Numerical Studies

The results recorded here for message scheduling demonstrate that off-line GA-
based message scheduling can significantly improve the communication performance
in a parallel system. In most cases, a moderate level of crossover (50%) and mutation
rates (10%) yielded the best schedules. Although not included here, when compared
to baseline and randomly generated schedules, the GA-based schedules are
significantly superior—typically reducing communication times by between 20%
and 50%, see [8] for details.

Interestingly, it is shown here that the best mapping—defined as a mapping that
minimizes a mapping objective function—is not always the best choice in terms of
minimizing overall communication time. In particular, as the number of CNs is
increased, optimal mappings that require only one phase of communication
generally report higher overall communication times than those good, but not
optimal mappings that require two non-trivial phases of communication.

5. CONCLUSION

The optimization of mapping and scheduling, either independently or in
combination, is critical to the performance of the STAP application for embedded
parallel systems. For such systems, great significance is placed on minimizing overall
execution time, which includes both computation and communication components.
Such reductions in execution time also translate into improved hardware efficiency
and thus reduced hardware requirements, which is often critical. The focus of this
research is off-line optimization of data mapping and message schedules for a class
of STAP algorithms to be implemented on a parallel embedded system.

An objective function is proposed and developed to measure the merit of a class of
mappings for STAP for implementation on the Mercury multicomputer. The
objective-function-based ranking provides a measure of the communication costs

86

A GA FOR SCHEDULING PARAl , STAP COMMUNICATIONS

associated with a given mapping. A combination of the message size and required
network resources for each message are key attributes used by the objective function.

A GA-based approach is proposed and developed for solving the message-
scheduling problem for a given mapping. A GA is a population-based optimization
model that uses selection and recombination operators to generate new sample
points in the solution space. Reproduction opportunities are applied in such a way
that those chromosomes representing a better solution to the targeted problem are
given more opportunities to reproduce than poorer chromosomes. Each chromo-
some is associated with a fitness value, which in this case is the communication
completion time of a schedule. The fitness of a candidate solution is calculated based
on its simulated performance. The GA-based optimization is performed off-line, and
the results of this optimization are static schedules for each CN in the parallel
system. These static schedules can then be used within the online parallel STAP
implementation. Through extensive numerical studies, it is shown that the off-line
optimization approaches can yield mappings and schedules that greatly improve the
on-line performance and reduce the hardware requirements of the parallel embedded

APPENDIX A: OVERVIEW OF STAP

STAP algorithms have been developed to extract desired signals from potential
target returns comprised of Doppler shifts associated with radar platform motion,
clutter returns, and interference including jamming. In order to solve complex, large-
scale, and real-time problems such as STAP, parallel processing has emerged as a key
hardware technology. This appendix provides a brief overview of STAP methods; for
a thorough theoretical treatment of STAP, the reader is referred to [6].

Current and future airborne radars must detect smaller targets in the presence of
increasing interference such as clutter, jamming, noise, and platform motion. If the
interference is localized in frequency and comes from a limited number of sources,
targets can be detected by using adaptive spatial weighting of the data from each
element of an antenna array [6]. By applying computed weights (determined in real
time) to the data, the effects of interference can be reduced.

For an airborne radar platform that is in motion, the Doppler spread of the clutter
returns is significant and the clutter characteristics are highly variable due to the
changing ground terrain. In this type of an environment the weights must be adapted
from the data in both the time and space dimensions. This general type of signal
processing method, which is referred to as STAP, is an adaptive processing technique
that simultaneously combines signals received from multiple elements of an antenna
array (the spatial domain) and from multiple pulses (the temporal domain). The
paragraphs to follow provide a general description of the computational complexity
involved in implementing STAP algorithms. For a detailed theoretical foundation
and analysis of these and other STAP algorithms, the reader is referred to [6].

Consider an A' element airborne radar array that transmits a coherent burst of M
pulses at a constant pulse repetition frequency (PRF) /,. = l/Tj-, where T, is the pulse
repetition interval (PRI). The time interval over which the echo returns are collected
is referred to as the coherent processing interval (CPI), and the resultant length of

87

88

89

90

91

WEST AND ANTONIO

interconnected in a parent-child fashion to form a fat tree topology as shown in
Fig.Bl.

The RACE" network is circuit-switched, thus a CN establishes a path through the
network prior to data transfer. The RACEway network is actually preemptive in
that a high-priority message can suspend (preempt) other active paths. When
arbitration for a given crossbar port, or sequence of ports, becomes necessary, the
arbitration is carried out on the basis of a combination of the user-programmable
packet priority and a fixed hardware priority at each crossbar based on the entry and
exit ports at the given crossbar [4]. For this work, the user-programmable packet
priority is assumed equivalent for all data packets, thus, the hardware priority
arbitration rules at each crossbar are used to resolve contention.

If two contending transactions have different priority levels at a given crossbar,
then the transaction having the highest hardware priority level kills the contending
lower-priority level transaction. If a transaction requires a port already occupied by
a lower-priority transaction, then the transmission of the lower-priority message is
suspended (i.e., preempted) and the released port is then taken by the higher-priority
transaction. The unsent data associated with the suspended transaction is re-
packaged as a new message at the originating CN and begins the process of
establishing a new path through the network. If two or more contending transactions
have the same priority level, the first one started holds off any other contending
transactions at the same level until the transmission of its data is completed.

The functionality of the RACEway" network has been encoded as a network
simulator for use in this research. The details of the implementation and operation of
the simulator are not given here, but can be found in [7, 8, 9]. Provided here is an
overview of experimental studies performed that illustrate the accuracy of the
simulator when compared with measured communication times taken from an actual
Mercury multicomputer.

Two classes of communication patterns were employed to evaluate the accuracy of
the simulator: simple test patterns and complex test patterns. Simple test patterns
included the following three test categories: (I) single-source message tests; (II) two-
source message tests (non-contending and contending paths); and (III) 3..A^-source
message tests (non-contending and contending paths). Complex communication
patterns included the following categories: (IV) all-to-all personalized test and (V)
randomized message queue communication test.

For the all-to-all personalized test, the outgoing message queues on each CN
contained one message to each of the other CNs in the network. For the randomized
message queue communication test (which closely resembles the communication
pattern required by STAP) a random number of messages are sent from each of the
CNs to randomly selected destinations. The outgoing message queues at each CN
were randomly scheduled (i.e., ordered). For all test cases, identical communication
patterns were executed on the actual Mercury computer and the network simulator.

A small subset of the tests performed are presented here. For each test, 50
independent trials were performed and averages computed for both the actual system
and the software simulator. (Note that both the actual system and the simulator are
non-deterministic.) The CNs are numbered left-to-right starting with 1 and
incrementing by 1 for each successive CN. For instance, the first crossbar located

92

A GA KOR SCHHDULING PARALLEL STAP COMMUNICATIONS

Comparison of Measured and Simulated Communication Times for Different Communication
Patterns for Messages of Size 64 kH

Measured Simulated Percent
time (ms) time (ms) error (%)

0.79608 6.29

.21279 5.88

Category Description

II
(non-contending)

2^6, 3^7

II
(contending)

2->4, 3^4

III
(contending)

2^3, 3^4
4^2

III
(contending)

2^6, 3^6
6-^4

IV 5^(6,7,8}
6^{5,7,8}
7^{5,6,8}
8 ^{5,6, 7}

IV All-to-all person;
communication
involving
CNs 2 through 8

V 2^ {4, 6,8} 3.45185 5.89

at the bottom left of the fat-tree contains the first four CNs, numbered 1, 2, 3, and 4.
The next four CNs (i.e., 5, 6, 7, and 8) are connected to the second (lowest-level)
crossbar from the left, and so forth. Provided in Table Cl are representative results
of the tests conducted. For all cases shown in the table, all transmitted messages were
of size 64 kB. This study demonstrates the accuracy of the simulator, in that it
typically has errors of around 5% or less. For a detailed discussion of these and
other tests, the reader is referred to [8].

ACKNOWLEDGMENT

This work was supported by DARPA under Contract F30602-97-2-0297.

93

WEST AND ANTOMO

REFERENCES

1. K. C. Cain, J. A. Torres, and R. T. Williams, "Real-Time Space-Time Adaptive Processing

Benchmark," Mitre Technical Report: MTR 96B0000021, Mitre, Center for Air Force C3 Systems,

Bedford, MA, February 1997.

2. M. Gen and R. Cheng, "Genetic Algorithms and Engineering Design," Wiley, New York, 1997.

3. M. F. Skalabrin and T. H. Einstein, STAP processing on a multicomputer; distribution of 3-D data

sets and processor allocation for optimum interprocessor communication, in "Proceedings of the

Adaptive Sensor Array Processing (ASAP) Workshop," March 1996.

4. The RACE Multicomputer, "Hardware Theory of Operation: Processors. I/O Interface, and

RACEway Interconnect," Vol. I, version 1.3.

5. L. Wang, H. J. Siegel, V. P. Roychowdhury, and A. A. Maciejewski, Task matching and scheduling in

heterogeneous computing environments using a genetic-algorithm-based approach, J. Parallel Distrih.

Comput. (Special Issue on Parallel Evolutionary Computing) 47 (November 1997), 8-22.

6. J. Ward, "Space-Time Adaptive Processing for Airborne Radar," Technical Report 1015,

Massachusetts Institute of Technology, Lincoln Laboratory, Lexington, MA, 1994.

7. J. M. West, "Simulation of Communication Time for a Space-Time Adaptive Processing Algorithm

Implemented on a Parallel Embedded System," Master's thesis. Computer Science, Texas Tech

University, 1998.

8. J. M. West, "Processor Allocation, Message Scheduling, and Algorithm Selection for Parallel Space-

Time Adaptive Processing," Dissertation, Computer Science, Texas Tech University, 2000.

9. J. M. West and J. K. Antonio, Simulation of the communication time for a space-time adaptive

processing algorithm on a parallel embedded system, in "Proceedings of the International Workshop

on Embedded HPC Systems and Applications (EHPC '98)" (J. Rolim, Ed.), Lecture Notes in

Computer Science, Vol. 1388; Parallel and Distributed Processing, pp. 979-986, IEEE Computer

Society, Orlando, FL, April 1998.

JACK M. WEST received the B.S., M.S., and Ph.D. in computer science from the Texas Tech
University, Lubbock, Texas, in 1995, 1998, and 2000, respectively. After graduation, he was involved in
post-doctoral work at the University of Oklahoma in the area of embedded high-performance systems. He
is currently a software developer with RiskMetrics Group.

JOHN K. ANTONIO received the B.S., M.S., and Ph.D. from the Texas A&M University, College
Station, Texas, in 1984, 1986, and 1989, respectively. He is currently professor and director of the School
of Computer Science at the University of Oklahoma. Before joining the University of Oklahoma, he was
with the Department of Computer Science at Texas Tech University and the School of Electrical and
Computer Engineering at Purdue University. He is a member of the Tau Beta Pi, Eta Kappa Nu, and Phi
Kappa Phi honorary societies and is a senior member of the IEEE Computer Society. Dr. Antonio's
current research interests include embedded high performance computing, reconfigurable computing,
parallel and distributed computing, and cluster computing.

94

Appendix F: Timothy Osmulski, Jeffrey T. Muehring, Brian Veale, Jack M. West,
Hongping Li, Sirirut Vanichayobon, Seok-Hyun Ko, John K. Antonio, and Sudarshan K.
Dhall, “A Probabilistic Power Prediction Tool for the Xilinx 4000-Series FPGA,”
Proceedings of the 5th International Workshop on Embedded/Distributed HPC Systems
and Applications (EHPC 2000), in Lecture Notes in Computer Science, IPDPS 2000
Workshops, sponsor: IEEE Computer Society, Cancun, Mexico, May 2000, pp. 776-783.

95

A Probabilistic Power Prediction Tool for the Xilinx
4000-Series FPGA

Timothy Osmulski, Jeffrey T. Muehring, Brian Veale, Jack M. West, Hongping Li,
Sirirut Vanichayobon, Seok-Hyun Ko, John K. Antonio, and Sudarshan K Dhall

School of Conputer Science
University of 0 Idaho ma

200 Felgar Street
Norman, OK 73019

Phone: (405) 325-7S59
antonic^ou.edu

Abstract. The worl^ described here introduces a practical and accurate tool for
predicting power consumption for FPGA circuits. The utility of the tool is that it
enables FPGA circuit designers to evaluate the power consumption of their
designs without resorting to the laborious and expensive enpirical ^proach of
instrumenting an FPGA board/chip and taldng actual power consumption
measurements. Prehminary results of the tool presented here indicate that an
error of less than 5% is usually achieved when conpared with actual physical
measurements of power consumption.

Introduction and Background

Reconfigurable computing devices, such as field programmable gate arrays (FPGAs),
have become a popular choice for the implementation of custom computing systems.
For special purpose computing environments, reconfigurable devices can offer a cost-
effecttve and more flexible alternative than the use of qjplication specific integrated
circuits (ASICs). They are especially cost-effective compared to ASICs when only a
few copies of the chip(s) are needed [1]. Another major advantage of FPGAs over
ASICs is that they can be reconfigured to change their functionality while still
resident in the system, which allows hardware designs to be changed as easily as
software and dynamically reconfigured to perform different frmctions at different
times [6].

Often a device's performance (i.e., speed) is a main design consideration; however,
power consumption is of growing concern as the logic density and speed of ICs
increase. Some research has been undertaken in the area of power consumption in
CMOS (complim^titary metal-oxide semiconductor) devices, e.g., see [4, 5].
However, most of this past work assumes design and implementation based on the use
of standard (basic cell) VLSI techniques, which is typically not a valid assumption for
,'^plication circuits designed for implementation on an FPGA.

96

Overview of the Tool

A probabilistic power prediction tool for the Xilinx 4000-series FPGA is overviewed
in this section. The tool, which is implemented in Java, takes as input two files: (1) a
configuration file associated with an FPGA design and (2) a^pinfle that characterizes
the signal activities of the input data pins to the FPGA. The configuration file defines
how each CLB (configurable logic block) is programmed and defines signal
connections among the programmed CLBs. The configuration file is an ASCII file
that is generated using a Xilinx Ml Foundation Series utility called ncdread. The pin
file is also an ASCII file, but is generated by the user. It contains a listing of pins that
are associated with the input data for the configured FPGA circuit. For each pin
number listed, probabilistic parameters are provided which characterize the signal
activity for that pin.

Based on the two input files, the tool propagates the probabilistic information
associated with the pins through a model of the FPGA configuration and calculates
the activity of every internal signal associated with the configuration [1]. The activity
of an internal signal s, denoted a^, is a value between zero and one and represents the
signal's relative frequency with respect to the frequency of the system clock,/ Thus,
the av^age frequency of signal s is given by aj^.

Cbmputing the activities of the internal signals represents the bulk of computations
performed by the tool [1]. Given the probabilistic parameters for all input signals of a
configured CLB, the probabilistic parameters of that CLB's output signals are
determined using a well-defined mathematical transformation [2]. Thus, the
probabilistic information for the pin signals is transformed as it passes through the
configured logic defined by the configuration file. However, the probabilistic
parameters of some CLB inputs may not be initially known because they are not
directly connected to pin signals, but instead are connected to the output of another
CLB for which the output probabilistic parameters have not yet been computed (i.e.,
there is a feedback loop). For this reason, the tool qjplies an iterative approach to
update the values for unknown signal parameters. The iteration process continues
until convergence is reached, which means that the determined signal parameters are
consistent based on the mathematical transformation that relates input and output
signal parameter values, for every CLB.

The average power dissipation due to a signal s is modeled by Yi C^(^)V ^ajl where
d(s) is the Manhattan distance the signal s spans across the array of CLBs, Q(^) is the
equivalent capacitance seen by the signal s, and V is the voltage level of the FPGA
device. The overall power consumption of the configured device is the sum of the
power dissipated by all signals. For an N x N array of CLBs, Manhattan signal
distances can range from 0 to 2N. Therefore, the values of 2N + 1 equivalent
capacitance values must be known, in general, to calculate the overall power
consumption. Letting 5 denote the set of all internal signals for a given configuration,
the overall power consumption of the FPGA is given by:

97

The values of the activities (i.e., the ai^) are dependent upon the parameter values
of the pin signals defined in the pin file. Thus, although a given configuration file
defines the set 5 of internal signals present, the parameter values in the pin file impact
the activity values of these internal signals.

i Calibration of tlie Tool

Let 5^ denote the set of signals of length /, i.e., 5^ = {s G 51 d(s) = i). So, the set of

signals 5 can be partitioned into 2/V + 1 subsets based on the length associated with
each signal. Using this partitioning, Eq. 1 can be expressed as follows:

P.,=\^^f CoX«.+C,^«,+-. + q„^«,

To determine the values of the tool's capacitance parameters, actual power
consumption measurements are taken from an instrumented FPGA using different
configuration files and pin input parameters. Specifically, 2N + 1 distinct
measurements are made and equated to the above equation using the activity values
(i.e., the a/^) computed by the tool. For thej-th design/data set combination, let P,
denote the measured power and let Aj^k denote the aggregate activity of all signals of
length k. The resulting set of equations is then solved to determine the 2N + 1
unknown capacitance parameter values:

^0.0 ^0.1

^2N.O ^2N.l

^O.IA' Y ^0

^lA'.iA' I '^m I I ^m

Solving the above equation for the vector of unknown capacitance values is how the
tool is calibrated.

Power Measurements

For this study, a total of 70 power measurements were made using 5 different
configuration files and 14 different data sets. Descriptions of these configuration files
and data sets are given in Tables 1 and 2, respectively. All of the configuration files
listed in Table 1 each take a total of 32-bits of data as input. The first three
configurations (fp_mult, fp_add, int_mult) each take two 16-bit operands on each
clock cycle, and the last two (serial_fir and parallel_fir) each take one 32-bit complex
operand on each clock cycle. The 32 bits of input data are numbered as 0 through 31
in Table 2, and two key parameters are used to characterize these bits: an activity
factor, a and a probability factor, p. The activity factor of an input bit is a value

98

^ *-,- -, ^ —J ^ J ,,,.,,,,. ^ ^,- -,-:iu ^^-.«^^* *^ *i ,.

of time that the bit has a value of one.
Fie. 1 shows plots of the measured power for all combinations of the confieuration

files and data sets described in Tables 1 and 2. For all cases, the clock was run at/=
30 MHz. With the exception of the fp_mult configuration file, the most active data set
filf^ J^niimbf^r ft\ i^ 3^v>pi3tfvl with thf^ hiohf^^t rtowt^r pon^iimrttion Al^o thf^ Ityi^t ■ lie llllllllL'd \J 1 l-> H3I>I>WL< IH31CU WIUI IJIC lll}:!lld>l Ln_rvVd L< Wlli^lllllLFl IWII. r\l->^^ IJIC lt^H3i>l

active data set file (number 5) is associated with the lowest power consumption across
all configuration files. There is somewhat of a correlation between the number of
comr>onents utilized bv each confioiiration and the r>ower consumption' however note

that even though the serial_fir implementation is slightly larger than parallel_fir, it
consumes less power. This is likely due to the fact that the parallel fir desieji requires r J r — c T
a hidi fan-out (and thus hidi routine capacitance) to drive the parallel multipliers.

Table 1. Characteristics of the configuration file£

Configuration
File Name

Description Con^onent
Utilization of

Xilins 4036xla

fp_mult
Custom 16-bit floatingpoint multipher with 11-
bit mantissa, 4-bit exponent, and a sign bit [3].

36S

fp_add Custom 16-bit floating point adder with 11-bit
mantissa, 4-bit exponent, and a sign bit [3].

339

int_mult 16-bit integer array multipher; produces 32-bit
product [3].

509

serial_fir

FIR filter inplementation using a serial-
multiply with a parallel reduction add tree.
Input data is 32-bit integer conplex. Constant
coefficient multipliers and adders from core
generator.

1060

parallel_fir

HR filter implementation using a parahel-
multiply with a series of delayed adders. Input
data is 32-bit integer complex. Constant
coefficient multiphers and adders from core
generator.

1055

1

99

TaUe 2. Characteristics of the data sets.

Data Set
Number

Description

1 Pins 0 Ihrcii^h 15 =>^ = 0.0 and a= 0.0.
Pins 16 through 31 =>^ = 0.5 and a= 1.0

2 Pins 0 Ihroi^h 15 =>^ = 0.0 and a= 0.0
Pins 16 through 31 =>^ = 0.75 and a = 0.4

3 Pins 0 Ihroi^h 15 =^p = 0.25 and a= 0.45
Pins 16 through 31 =>^ = 0.0 and a= 0.0

4 PinsOlhroi^hl5 =>^ = 0. 5 and a= 1.0
Pins 16 through 31 =>^ = 0.0 and a= 0.0

5 Pins 0 Ihroi^h 31 =^p = 0.0 and a= 0.0

6 PinsOlhroi^h31 =>^ = 0.5anda= 1.0

7 Even numbered pins =>p = 0.0 and a= 0.0
Odd nunbered pins =>^ = 0.5 and a= 1.0

8 Even numbered pins =>^ = 0.3 and a= 0.5
Odd numbered pins =>p = 0.7 and a= 0.5

9 Even nunbered pins =>^ = 0.5 and a= 1.0
Odd numbered pins =>p = 0.0 and a= 0.0

10 Even numbered pins =>^ = 0.8 and a= 0.1
Odd numbered pins =>p = 0.2 and a = 0.15

11 For all pins, p and a selected at random

(different from data s^ 12).

12 Forallpins,^ and a selected at random
(different from data set 11).

B Pins0lhroi^h2,^ = 0.1 and a= 0.1
Pins 3 Ihroi^h 5,p = 0.2 and a= 0.2, etc.,
p*s continue to increase in steps of 0.1 and a*s
increase to 0.5 in steps of 0.1 and then
decrease back down to 0.0.

14 Pin 0,^ = 0.1 anda=0.2
Pin 1,^ = 0.2 and a=0.4
Pin 2,p = 0.3 and a= 0.6, etc.,
p*s continue to increase to 1.0 in steps of 0.1
(and Ihen decrease) and a*s increase to 1.0 in
steps of 0.2 (and then decrease).

1

100

101

102

103

Appendix G: Hongping Li, John K. Antonio, and Sudarshan K. Dhall, “Fast and Precise
Power Prediction for Combinational Circuits,” Proceedings of the IEEE Symposium on
VLSI, sponsor: IEEE, Tampa, FL, Feb 2003, pp. 254-259.

104

Fast and Precise Power Prediction for Combinational Circuits

Hongping Li, John K. Antonio, and Sudarshan K. Dhall
School of Computer Science, University of Oklahoma

200 Felgar Street, Norman OK 73019-6151
hongping@ou.edu, antonio@ou.edu, sdhall@ou.edu

Abstract

The power consumed by a combinational circuit is
dictated by the switching activities of all signab
associated with the circuit An analytical approach is
proposed for calculating signal activities for
combinational circuits. The approach is based on a
Markov chain signal model, and directly accounts for
correlations present among the signals. The accuracy
of the approach is verified by comparing signal activity
values calculated using the proposed approach with
corresponding values produced through simulation
studies. It is also demonstrated that the proposed
 fch is computationally efficient

1. Introduction

Power consumption of integrated circuits (ICs) is of
growing concern as more electronic devices are being
deployed in mobile and portable applications, e.g.,
PDAs, mobile telephones, and other battery-powered
electronic devices. As the functionality of such devices
increases, so does the complexity and sophistication of
flie underlying circuits. More complexity and faster
clock rates generally translate into higher power
consumption for a given hardware implementation
technology. Because battery technology has not
improved at flie same rate as IC technology, there is
strong motivation to design circuits fliat are as power
efficient as possible to extend battery life for portable
devices.

The focus of fliis paper is the development of an
analytical tool for predicting power consumption of
combinational circuits. This tool, which is implemented
in software, can be utilized during flie design phase to
give the designer quick and accurate predictions of
power consumption for a given circuit design.

Several similar and related approaches to this
problem have been proposed in flie past, including
simulation-based [1] and analytical approaches [2, 3, 4].

A good survey of past approaches can be found in [5].
Generally, simulation-based approaches achieve high
accuracy but require long execution times; in contrast,
the analytical qjproaches are faster but are generally less
accurate. In this paper a new analytical approach is
proposed fliat achieves fast execution time and accuracy
that is comparable with simulation-based methods. As
explained below, flie particular focus is on power
consumption of circuits implemented in CMOS, but flie
proposed approach may be applicable for other
technologies as well.

Power consumption in a CMOS circuit is primarily
due to three types of current flow: leakage current,
switching transient current, and load capacitance
charging current [9]. The last is the dominant
component of power consumption in CMOS devices,
and is strongly dependent on signal switching activity.

Let S denote flie set of all signals associated with a
circuit. For each s e S, let C(s) denote the capacitive
load associated with signal s. Also, let a(s) denote flie
activity of signal s, which has a value between zero and
one, and represents flie signal's normalized average
frequency relative to flie frequency of a system clock,/!
Thus, fa(s') gives the average frequency of signal s.
Based on these assumptions and notation, flie average
power for a CMOS circuit operating at a voltage level of
Fcanbe expressed as [4, 5]:

Power,,g=iFV^CW«(^). (1)
seS

The problem addressed in fliis paper is to determine
the activity of all signals of a combinational circuit
given an appropriate probabilistic model for the primary
input signals that drive the circuit. The signal model
proposed in fliis paper is based on a Markov chain. The
signal activity is easily computed from the parameters
associated with flie proposed signal model. In flie
proposed approach, signals wifli known Markov chain
representations are propagated through flie circuit to
produce Markov chain representations for the outputs of
all gates in the circuit. Accuracy of the approach is
verified by comparing signal activities produced by the

105

proposed method with corresponding activities
produced flirough simulation studies. When compared
wifli oflier related approaches, a key aspect of flie
proposed approach is fliat correlations present among
flie signals due to re-convergent fan-out are accounted
for directly.

2. Previous Related Approaches

consumption, refer to Eq. 1. An early approach for
estimating signal activities was developed in [3], in
which signals of a circuit are modeled to be mutually
independent strict-sense-stationary (SSS) mean-ergodic
0-1 processes. Under fliese assumptions, flie activity of a
signal y ftom a circuit with H-primary inputs can be
expressed as

2.1 Signal Probability Calculation

In [2], probabilistic signal modeling for
combinational circuits was first introduced. Each signal
is modeled with a single probabilistic parameter that
defines the probability of a signal having a logical value
of one. For signal x, the probability that x has logic
value 1 is defined by P(x') = P(x = 1). Two algorithms

for calculating signal probabilities are introduced in [2].
These approaches require that a Boolean function
expression associated wifli each signal be derived in
terms of flie primary inputs. Because flie number of
terms in these expressions can grow exponentially with
ftie number of inputs, flie complexity of fliese
approaches can be prohibitive for practical circuits.

A computationally efficient algorithm for calculating
signal probabilities is introduced in [7], named
"Algoriflim 1," which operates by propagating
probability values thiou^ the gates of circuit, fliereby
drastically reducing flie size of ftie Boolean functions
fliat must be evaluated. This algorithm is simple and fast
- it has a linear complexity in flie number of gates - but
is not accurate for all classes of circuits.

Anoflier ajgoridim is proposed in [7] called the
Weighted Averaging Algorithm (WAA), which
generally achieves better accuracy flian Algorithm 1 and
has a comparable time complexity. However, flie WAA
still does not always produce correct values.

A method for accounting for signal probability
correlations was developed in [6] named the correlation
coefficient mefliod (CCM). By using fliis approach, flie
probability of flie output of a two-input gate can be more
accurately calculated, given the probabilities of flie two
inputs and an associated correlation factor associated
wifli the two signals. In this algorithm, flie correlation
factor can also be calculated analytically by means of a
set of basic propagation rules.

2.2. Signal Activity Calculation

The above-described approaches of [2], [6], and [7]
are concerned with determining the probabilities of
signal values, not the probabilities of signal transitions,
i.e., activities, which are necessary for estimating power

where dyldx^ is the Boolean difference of function y

with respect to x, and is defined by

T-= >-L=i ©>-L=o= X-*^b-■-^-^^i-bi^-^^i+b-■-^-^^J
dx^ ^ (3)

®y{x^,---,x^-\Ax^^wa„\

Intuitively, flie Boolean difference dyldx^ defines

whether a transition of signal x, will cause a transition in
output signal y. Specifically, if flie Boolean difference
function evaluates to one, flien a transition of signal x,
causes a transition in y. So, the probability of the

(^\
Boolean difference function, P —^ , defines flie

probability fliat a change in j' will occur given fliat there
is a change in x,.

The calculation of flie probability of the Boolean

difference terms, i.e., P , this calculation can be

complicated for large and complex circuits. In [3], the
calculation of fliese terms is accomplished by first
representing the nodes of the circuit with a binary
decision diagram (BDD) [3, 5]. In practice, flie BDD
approach often achieves linear or near linear time
complexity; however, in the worst case the complexity
can grow exponentially with the number of gates.

It is noted in [4] that Eq. 2, i.e., the approach
described in [3], fails to consider flie effect of
simultaneous switching of gate inputs. Each Boolean
difference term associated with Eq. 2 describes an input-
switching event in which exactly one of the inputs
makes a transition. Thus, Eq. 2 does not account for
events involving simultaneous switching of two or more
of the input signals. The concept of the generalized
Boolean difference was introduced in [4] to account for
simultaneous switching, and is denoted as follows:

= (yIX =h, ,x = h, ,...x, = h.

®(y|x =h, ,x =h ,...,x =h '),

where ^ is a positive integer, x^ , j = \,%...,k, are

distinct mutually independent primary inputs of j', and

106

b^ aie binary values of 0 or 1. Note that if the

generalized Boolean difference evaluates to one, flien

the simultaneous transitions of signals {^Xi,Xj^,...,Xj)

firom (bi,h ,...,h) to (h ,bi ,...,h) or from

(bi,h ,...,bi) to (bi ,bi ,...,bi) will cause a transition

atj".
Eq. 2 is ad^ted in [4] using file generali2ed Boolean

difference concept to account for simultaneous
switching, resulting in:

^-L\pJ ^'y^ 1+fJ ^'y^ 1+.+fJ ^'y^]

1 , ... , pc ^yIM ' are

conditional probabilities of the generalized Boolean
differences under the condition fiiat only file indicated
inputs simultaneously switeh, and file rest do not.
Details on how to caloilate these conditional
probabilities can be found in [4].

The ^proaches of [3] and [4] can have hi^
computational complexities because the number of
terms in the underlying equations/transformations can
grow e7q>onentially wifii the number of primary inputs
to the circuit. Trade-of& between computational
complexity and accuracy are possible relative to file
evaluation of Eq. 2 and Eq. 5 (associated with [3] and
[4], respectively). Instead of deriving a signal's logic
fimction in terms of file circuit's primary irq>uts, the
parameters to file immediate irq>uts of the signal's logic
gate can be used. This type of "gate-by-^ate" tedinique
will generally introduce error because it does not
account for correlations present among the internal
signals that drive file gates within file circuit.

3. Markov Chain Signal Model

3.1. Preliminaries

In fiiis section we introduce a signal model fiiat is
based on a Maikov chain having fiiree event parameters.
It is shown that the proposed Markov chain model is
equival^it to the two-parameter probability/activity
signal model of [3] and [4]. The advantage of modeling
signals with Markov chains is that it makes it possible to
compute correlations between signals related to bofii
probability and activity.

The approach derived here can be viewed as a
generalization of the approach in [6]. Instead of
tracking a correlation factor foe the single probability
parameter model, transformations foe correlation factors
associated with the three parameters of the Markov
model are derived. This ultimately leads to a fast and
accurate "gate-by-gate" algorithm for calculating signal
probabilities and activities.

As illustrated in Figure 1, the proposed Markov chain
signal model has three event parameters for signal A.
The event denoted by A represents the signal being in
state 1, and^i and^2 represent the events that th^e is a
transition from state 0 to 1 and from state 1 to 0,
teq>ectively. Note fiiat file probability of event A is
denoted by P{A^, and is equival^it to file signal
probability defined in the previous section.

Figure 1. Proposed Markov chain signal model.

For notational convenience and clarity, we will
denote the value of P{A^ as p^ (for the value of the
probability of signal A) and file value of the activity

a^A) as aji (for the value of file activity of signal A)
throu^out file rest of the p^>er. Using these notations
and ^plying basic properties of Maikov chains along
with the definition of signal activity, file following
expressions can be derived for PiA\ P(A i) and P(Ai):

P{A) = p„ P(A,) = -^, P{A^) = -^- (6)

Thus, if file values of bofii fiie probability and activity

parameters of a signal are known (i.e., p^ and o^ fii^i
the probabilities of the fiiree ev^its associated with the
proposed Markov model for the signal are completely
detamined. Likewise, knowing the probability values of
the three param^ers of the Markov model fiilly
detamines the probability and activity parameters of the
signal.

In ord» to define correlations between two signals
modeled with Markov chains, some basic definitions are
needed. Let A and B denote two events and let P(AB)
denote file probability of bofii ^ and £ occurring. From
basic probability theory [8], P(AB) = P{A/E)P{E), where
P(A/B) represents file probability of ^ given B. Also, the
correlation coefficient of two events A and B is defined

107

where a^g is the covariance and <^^ and <Jg are the
positive si.iLiire toots of the variances of^ and B. It can
be shown that

P,:AB)-P,:A)P,:B)
PAH — ~ I , •= ■ (*)

^P(A)a-P(A))^PiB)<\-PiB))

In order to simplify later derivations, it is convenient to
define the correlation factor Cjts of two events^ and B
as

P(AS) PiAlB) P(BIA)

" P{.A)P{.B) P{,A) P(B)

By applying Eq. 8 to Eq. 9, the following relation^ip
can be derived:

(c,,-i).(io)
P(A)(\-P(Ay)JP(B)0-P(B))

Thus, Cjis is related to pjis through scaling and shifting.
The value of p^e-, by definition [8], is a teal numbet in
the intetral [-1, 1]; thetefote, accotding to Rq. 10, C^B

takes on teal non-negative values. .A.Iso, p^g = 0
cotresponds to C^£ =1, and indicates that the events^
and B are mutually independent. Siniilatly, pj,s < 0 (i.e.,
A and B are negatively correlated) cottesponds to 0 <
CxB '^ li and pxs > 0 (i.e., A and fi ate positively
cottelated) cottesponds to C>£> 1.

3.2. Markov Chain Model for Basic Logic Gales

The focLis in this subsection is on detiving the
NLitkov cliain model fot the oiitpiit of a basic logic gate
in which the NLitkov cliain models of the input signals
ate known. The simple case of a NOT gate is consideted
tltst followed by the analysis of two-input basic logic
gates.

Fot a NOT gate with input A, the Boolean output

ftmction is given by Y = A . Ftom Figute I, it is cleat
that the Markov model for yis given by

P(y) = l-i>(^, P{Y,) = P{A{),PiY^) = PiA{). (11)

Consider now the case of a two-input basic logic
gate. Assuming the Markov chain models of inputs A
and B are known, the objective is to detive the NLitkov
chain model fot ou^ut signal Y. A ke\' to detiving the
NLitkov cliain model for signal yis to teptesent the state
ttansition diagtam associated with the gate's two inputs,
as shown in Figute 2. The foiu states in the figute
cottespond to the foiu input combinations fot the two

inputs. Tlie first digit of each state Libel cottesponds to
the value of^, and flie second to the value of S, e.g., the
state Libeled "01" cottesponds to A = 0 and S = 1.
.A.Itliougli not Libeled on the figiue, the ditected edges
teptesent ttansition events. To illusttate the notation to
label ttansition events, "00-^10" will be used lo
teptesent the event tliat input signals transitions from 0
to 1 and signal fi stays in state 0.

Figure 2. State transition diagram for a two-
input gate.

The known patametets of ihe Madcov chain models
for signals A and fi are given by P(A), P(d{), PiAz),
P(B), P{B['\, and ^(fii). Also assumed to be known are
the cottelation factots fot paits of events associated with
the NLitkov chain models for ihe inpuls. From Eq. 9
note tliat P{AB) = P(A'^(_B)C^s, where C^s is the
correlation factor associated with events A and B.
Similarly, the correlation factor C^g enables the

calculation of P(A}B2) using the fact that
P(.4ifi2) = i>(^,)i>(B2)C^j^ . Recall from Eq. 10 that

independent events correspond to a correlation factor of
unity. Given the Markov chain models fot signals A and
fi (^and the cottesponding cottelation factots) it is
possible to detive the ptobability associated with every
event sliowti in the state ttansition diagtam of Figure 2.
.A^ complete tabulation of these expressions can be found
in [11].

Deriving a Markov chain model fot the output (Y) of
a two-iiq>ut gate depends on the patticuLit function of
the gate. To illustrate, considet the specific example of
an AND gate, i.e., Y=AB. Fot an AND gate, the output
takes on logic value 1 if and only if both inputs are 1.
Thus,

P(X) = P(il') = p^PsC^s. (12)

The event ^i is associated with three events firom Figure
2, namely: 00^11, 01^11, and 10^11. Thus, equality
can be established as follows:

P{Y)P{Y^) = i>(00)i>(00 -* 1 l)-i-i'(01)P(00 ^ 11)

-i-i>(01)i>(00^11).

108

Solving Eq. 13 for P{Y\) and using Eqs. 6 results inftie

following expression:

- j[^AC^£,^hCA,£, -^C^,^y^a,l{\-p^p,C^,)

The parameters X, X^, and X^ are simply functions of
probabilities and correlations factors and are used for
notational convenience; expressions for ftiese
parameters can be found in [11]. Derivation for P{Y-^
follows in a similar fashion and can be expressed as

"-^i '^■•} '^■i ^7. r.

Ip^ Ip; Ipy Ipi "=-=
Derivations of P(Y), P(Y{), and PiY^) for two-input OR
and XOR gates are included in [11], Ivfethods for
calculating/propagating correlation factors ftirou^ basic
elements of a circuit are also included in [11].

Step 4 Partition the circuit into levels.
As shown in Figure 3(e), leveb are defined at
the input and output of each basic gate. Note
that Aere is at most one gate between any two
consecutive leveb.

Step 5: Successively apply propagation rules at each
level.
Apply the propagation rules from [11] for
calculating the parameters of the Markov
model for the basic gate outputs and Ae
associated correlation factors.

4. Markov Chain Propagation Algorithm

This section describes a proposed Markov Chain
Propagation (MCP) algoriftim for determining the
Markov chain models for all signals of a given
combinational circuit. The Markov chain signal model
of Section 3 is employed, and it is assumed that ftie
parameters of the model are known for the circuit's
primary inputs. The overall approach is to
propagate signal information associated with the
Markov chain model throu^ ftie circuit in a "gate-by-
gate" fashion. Recall that once the Markov chain
model is determined for all signals, the signal
activities and circuit power estimate are determined
using Eq. 6 and Eq. 1, respectively. It is assumed that
ftie given circuit is specified at ftie level of basic logic
gates.

MCP Algorithm
Step 1: Represent the given combinational circuit as

a directed acyclic graph (DAG).
Vertices of the DAG correspond to basic gates
and edges represent signab. Two extra vertices
(a source and a sink) are included in Ae DAG
to accommodate the primary inputs and
ou^ts of Ae circuit An example of how to
represent a circuit with the DAG model is
illustrated by Figures 3(a) and 3(b).

Step 2: Perform a topological sort [10] on the DAG
to obtain an ordering of the gates.
See Figure 3(c).

Step 3: Transform to two-input basic logic gates.
As shown in Figure 3(d), replace all basic
gates having more Aan two inputs with an
equival&tt sequence of two-input basic gates. Figure 3. Illustration of the MCP Algorithm.

109

For a circuit with M signals and N gates, the time
complexity of the MCP Algorithm can be shown to be
®(M + IT). Due to space limitations, a detailed

derivation of the time complexity of the MCP Algorithm
is not includedhere, butcanbefoundin[ll].

5. Experimental Results

The MCP Algorithm has been implemented and
evaluated using several test circuits. To verify the
accuracy of the results produced by the MCP algorithm,

PSpice circuit simulations were performed on the same
test circuits. In the simulation studies, time-series
realizations from the assumed Markov chain model for
each primary input were used to drive the circuit
simulation. Estimates of signal probabilities were
derived ftom the simulations by counting flie fraction of
time each signal took on a value of unity. Estimates of
signal activities were derived from flie simulations by
counting signal transitions.

The MCP Algorithm was also evaluated using a
circuit named C432 from the ISCAS-85 Benchmark Set.
For fliis circuit there are a total of 145 distinct signals,
not including the primary inputs. (Note that there are a
total of 432 physical signals, which includes fan-out
signals.) Table 1 shows the distribution of absolute
differences and relative percentage errors between
activity values computed by the MCP Algorithm and
fliose derived flirough simulation. Other circuits were
also tested and these results also indicate the accuracy of
flieMCP Algoriflim.

Table 1. Accuracy for the MCP Algorithm.

Absolute Drff. Number of Relative Enor Number
Range Signals Range (%') of Signals

(0.01,0.021 35 (1,21 41
(0.02, 0.031 19 (2,51 31
(0.03, 0.041 10 (5, 101 25
(0.04, 0.051 10 (10, 201 3
(0.05, 0.06] 1 (20, 50] 2

(0.06, 11 0 >50 0

6. Summary and Future Work

The problem of determining the activities of all
signals of a combinational circuit is addressed in this
paper. A new signal model is proposed based on a
Markov chain. Signal activity is easily computed from
flie parameters associated with the proposed signal
model. In the proposed approach, signals wifli known

Markov chain representations are propagated through
the circuit to produce a Markov chain representation for
the output of each gate in the circuit. Accuracy of the
approach is verified by comparing signal activities
produced by the proposed method with corresponding
activities produced through simulation studies. These
initial testing results will be extended in future work by
testing more and larger circuits.

Ackn owled gm en ts

This research was supported by DARPA under Contract
F30602-97-2-0297. The authors would like to thank Dr.
S. Lakshmivarahan for his contributions to this work.

References

[I] R. Burch, F. N. Najm, P. Yang, and T. Trick, "A Monte
Cario Approach for Power Estimation", IEEE Trans. VLSI
Systems,Vo\. l,No. l,Mar. 1993, pp. 63-71.

[2] K. P. Parker and E. J. McCluskey, "Probabilistic Treatment
of General Combinational Networks," IEEE Trans.
Computers, Vo\. C-24,No. 6, June 1975, pp. 668-670.

[3] F. N. Najm, "Transition Density: A New Measure of
Activity in Digital Circuits," IEEE TYans. Computer-Aided
Design of Integrated Circuits and Systems, Vol. 12, No. 2,
Feb. 1993,pp.310-323.

[4] T.-L. Cliou and K. Roy, "Estimation of Activity for Static
and Domino CMOS Circuits Considering Signal Correlations
and Simultaneous Switching," IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, Vol. 15, No. 10,
Oct. 1996, pp 1257-1265.

[5] F. N. Najm, "A Survey of Power Estimation Techniques in
"VLSI Circuits," IEEE Trans, on VLSI Systems, Vol. 2, No. 4,
Dec. 1994, pp. 446-455.

[6] S. Ercolani, M. Favalli, M. Damiani, P. Olovo, and B.
Ricco, 'Estimate of Signal Probability in Combinational Logic
Networks," Proc. IEEE European Test Conference, April
1989, pp. 132-138.

[7] B. Krishnamurthy and L G. ToUis, "Improved Techniques
for Estimating Signal Probabilities," IEEE Trans. Computers,
Vol. 38, No. 7, July 1989, pp. 1041-1045.

[8] J. B. Thomas, An Introduction to Applied Probability and
Random Processes, Krieger Publishing, Huntington, NY,
1981.

[9] M. J. M. Smith, Application-Specific Integrated Circuits,
Addison Wesley, Reading, MA, 1997.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to Algorithms, McGraw-Hill New York, NY,
2001.

[II] H. Li, J. K. Antonio, and S. K. Dhall, "Fast and Precise
Power Prediction for Combinational Circuits," Technical
Report No. CS-TR-02-001, School of Computer Science,
University of Oklahoma, Nov. 2002.

110

Appendix H: Nikhil D. Gupta, John K. Antonio, and Jack M. West, “Reconfigurable
Computing for Space-Time Adaptive Processing” Proceedings of the Sixth Annual IEEE
Symposium on Field Programmable Custom Computing Machines (FCCM), Napa, CA,
USA, Apr. 1998, pp. 335-336.

111

Reconfigurable Computing for Space-Time Adaptive Processing

Nikhil D. Gupta, John K. Antonio, and Jack M. West
Department of Computer Science

Box 43104
Texas Tech University

Lubbock, TX 79409-3104 USA
Tel: 806-742-1659

{gupta, antonio, west}@ttu.edu

1. Introduction

Space-lime adaptive processing (STAP) refers to a class of
signal processing techniques used to process returns of an antenna
array radar system [4]. STAP algorithms are designed to extract
desired target signals from returns comprised of Doppler shifts,
ground clutter, and jamming interference. STAP simultaneously
and adaptively combines the signals received on multiple
elements of an antenna array - the spatial domain - and from
multiple pulse repetition periods - the temporal domain.

The output of STAP is a weighted sum of multiple returns,
where the weights for each return in the sum are calculated
adaptively and in real-time. The most computationally intensive
portion of most STAP approaches is the calculation of the
adaptive weight values. Calculation of the weights involves
solving a set of linear equations based on an estimate of the
covariance matrix associated with the radar return data.

Existing approaches for STAP typically rely on the use of
multiple digital signal processors (DSPs) or general-purpose
processors (GPPs) to calculate the adaptive weights. These
approaches are often based on solving multiple sets of linear
equations and require the calculation of numerous vector inner
products. This paper proposes the use of EPGAs as vector co-
processors capable of performing inner product calculation.

Two different " inner-product co-processor" designs are
introduced for use with the host DSP or GPP. The first has a
multiply-and-accumulate structure, and the second uses a
reduction-style tree structure having two multipliers and an adder.

2. STAP Weight Calculation
2.1 Basic Formulation

The STAP algorithm assumed here is known as X^'-order
Doppler factored STAP, which is classified as a partially adaptive
technique. Due to the space limitation, it will not be possible to
fully explain this algorithm. Instead, the focus here will be on the
necessaiy notation and core calculations required to determine the
values of the adaptive weights. For more information on STAP,
the reader is referred to [1, 4].

Determining the values for the ra-vector of adaptive weights,
denoted by w , involves solving a system of linear equations of
the form:

'¥w=s, (1)

This worl! was supported by DARPA under contract number F30S02-S7-
2-0237

where j is a known ra-vector called the steering vector and "i
is an estimate of the covariance matrix, which is determined
based on the sampled radar retums.'Pis derived based on
space-time data matrix^ which is an nxN matrix defined by:
X = [xj Xj ...x^jfj. Based on this the definition,'P is given
by:

'¥ = — XX^ (2)

2.2 QR-Decomposition and Conjugate Gradient

The QR-decomposition approach is a direct approach for
solving a system of linear equations. The QR approach always
gives an exact solution and the complexity of the algorithm is
fixed. It involves performing a QR-decomposition on the matrix
jf, the result of which is an A^xA^ orthogonal matrix Q and an
HXA^ upper triangular matrix R such that X = QR. The final
result is obtained by forward and backward substitution. For
more details the reader is referred to [1].

The conjugate gradient approach is an iterative method
that provides a general means for solving a system of linear
equations [2]. For the system of equations given inEq. (1), it is
based on the idea of minimizing the following function:

f(w) = -w''¥w-sw. (3)

The function/is minimized when its gradient is zero, i.e.,
Vf = 'i'w—s =0, which corresponds to the solution to the
original system of linear equations. The very repetitive and
regular numerical structure of the conjugate gradient update
equations makes it a prime candidate for implementation on an
FPGA system.

Numerical studies were conducted using Matlab
implementations of the QR-decomposition and CG methods on
actual STAP data collected by the Multi-Channel Airborne
Radar Measurement (MCARM) system of Rome Lab [3].
Further details of this study can be found in [6].

3. Inner-Product FPGA Co-Processor

Each of the two methods outlined above requires
calculating a number of inner products. Given enough
resources, all the inner products could be done in parallel on
FPGAs. Because the available system has only two FPGAs [5],
the computations was divided among the host processor and the
FPGA board. The two schemes that were implemented are
outlined below. For both schemes, the data vectors are assumed
to be in block-floating-point format [91. Additionally, the

112

multiplier implementation is based on discussion in [7] and the
adder unit uses 4-bit carry-look-ahead adders [8] in each stage of
the adder pipe.

3.1 Multiply-and-Accumulate Implementation

In the first implementation shown in Figure 1, the FPGA is
configured to perform the multiply-and-accumulate operations on
the input vectors. The implementation consists of a multiply unit
and an accumulator, which is composed of a normalization unit
and an adder. The normalization unit shifts the binary point of the

The multiply-and-add unit reads in four operands and
performs three block-floating-point operations per cycle. Thus,

HOST
PROCESSOR

I Noimalmna unit

Figure 1: Block diagram implementation of the multiply-and-
accumulate unit on WildOne FPGA board.

mantissa and makes a compensating adjustment to the exponent
prior to the addition. The output of the adder is fed back and
accumulated with the next product term.

The single cycle multiply-and-ac cumulate is achieved by
pipelining each unit of the implementation. This unit reads in two
operands and performs two operations per cycle. Thus, the unit
reduces two W-vectors to a constant number of partial sums equal
to the number of stages in the accumulator pipe. The
implementation allocates approximately 88% of the configurable
logic blocks (CLBs) on the Xilinx 4028EX FPGA. The
implementation can be clocked at 40MHz, thus giving a
throughput of 80 million block-floating-point operations per
second.

3.2 Multiply-and-Add Implementation

Figure 2 illustrates the second implementation that performs
an inner product, i.e., a multiply-and-add operation on the two
input vectors. The design incorporates two 16-bit multiply units
and an adder. By using this approach, two multiplies can be
performed in parallel, and afterwards, the adder computes the
sum of the two products.

A challenge associated with this implementation is that four
16-bit input operands, i.e., 64 bits, are required per computation
cycle. Unfortunately, the data-path to the FPGA board is only 36-
bits wide. The solution to this problem involves clocking the
input state machine at twice the frequency of the multiply-and-
add state machine, and registering the flrst two operands for one
input state machine clock cycle.

HOST
PROCESSOR 1 I .»i^iii|r/ii^uu:i

' ► _L
E
U
F
F
F
R

+

Figure 2: Block diagram implementafion of the multiply-and-
add unit on WildOne FPGA board.

the two input W-vectors are reduced to an N/2-vector of partial
sums. This implementation, however, involves an additional
N/2 addition operations to obtain the inner product result. For
this implementation, approximately 99% of the available CLBs
on the Xilinx 4028EX FPGA are required. Ih summary, for a
fixed clock rate, the second design can provide a higher
throughput, but requires more computation from the host (to
perform the flnal summation of the partial sums).

4. References
[1] K. C. Cain, J. A. Torres, and R. T. Williams, "Real-Time

Space-Time Adaptive Processing BendimarK\ Mitre TR:
MTR96B0000021,Mitre, Bedford, MA, Februaiy 1997.

[2] D. G. Luenberger, Linear and Nonlinear Programming,
Second Edition, Addison-Wesley, Reading, MA, 1984.

[3] Real-Time MCARM Data Sets, http://sunrise.oc.rl.af mil.

[4] J. Ward, Space-Time Adaptive Processing for Airborne
Radar, Technical Report 1015, Massachusetts Institute of
Technology, Lincoln Laboratory, Lexington, MA, 1994.

[5] Wild-One Hardware Reference Manual 11927-0000
Revision ft/, Annapolis Micro Systems Inc., MD, 1997.

[6] Nikhil D. Gupta, Reconfigurable Computing for Space-
Time Adaptive Processing, MS Thesis Proposal, TTU,
http://hpcl.cs.ttu.edu/darpa/reconflgurable/, 1997.

[7] T.T. Do, H.Kropp, P. Pirech, "Implementafion of Pipelined
Mulfipliers on Xilinx FPGAs," Proceedings of the /"'
International Workshop on Field-Programmable Logic
and Applications, Springer Verlag, Septemberl 997

[8] M. Morris Mano, Digital Logic and Computer Design,
Second Edifion, Prenfice Hall, Englewood Cliffs, NJ, 1992

[9] W. W. Smith, J. M. Smith Handbook of Real-Time Fast
Fourier Transforms, IEEE Press, New York, NY, 1995

113

Appendix I: Jeffrey T. Muehring and John K. Antonio, “Minimizing Power
Consumption using Signal Activity Transformations for Very Deep FPGA Pipelines,”
Proceedings of the Military and Aerospace Applications for Programmable Devices and
Technologies Conference (MAPLD 2000), sponsors: NASA and Johns Hopkins
University/Applied Physics Laboratory, Laurel, MD, Sep. 2000.

114

115

associated placing and fetching of data in this memoiy space by the range and azimuth
PEs, respectively, this type of SAR iii:q)lenienl:ation is generally not thought to be a
"purely streaming" ^pUcation. However, as is presented in this p^er, these
conqnitations (both phases) can in fact be structured as a single conqnitational pipeline,
which can be directly m^ped onto an array of FPGAs. In the proposed approach, no
intennediate mem^ory buffer is required between the two phases of coiiq)utation. Instead,
within the structure of the conqnitational pipeline are long segments of delay elements
that effectively provide the intennediate storage associated with the more traditional
approach. One potential advantage of the proposed ^proach is that data need not be
continuously stored and then fetched from a separate memory module by PE (which,
incidentally, can require significant power consuii5)tion). Instead, the data streams
continuously through a long coiiq)utational pipeline. Within this pipeline are the t^s of
the FIR (finite iiiq)ulse response) iiiq)lem^entafions of both the range and azimuth
processing, interspersed with long segments of delay dem^ents. Although the resulting
pipeline may be thousands of stages long for practical values of SAR parameters, it is a
viable approach because end-to-end latencies on the order of 1 millisecond are typically
acceptable, provided that the required throughput is achieved.

The second contribution presented in this paper demonstrates how signal activity
parameters of incoming data can be transformed, before the data are processed by a
computational pipeline, as a means of reducing overall power consunption. The key to
understanding this approach is the realization that the activity levels of the input signals
to the computational pipeUne dictate its level of power consun^tion. The activity of a
given input signal (i.e., bit) is defined as the fraction of times that the signal transitions
relative to the system clock. It has been demonstrated that increasing the signal activities
of input data to a pipelined circuit implemented on an FPGA also increases the power
consumption of the circuit [1]. In the present paper we illustrate how the activities of the
input data can be transformed (pre-processed) so that the resulting (transformed) signals
that are input into &e conQ>utatioiial pipeline have activity values that are weU-matched
with the pipelined circuit in terms of rrriniinizing consumed power. At the end of the
computational pipeUne, an inverse transformation is applied to the output values to
convert them back to their proper (and meaningfiil) representation. This approach is
based on two fimdamental assunqttions: (1) that the power consun^tion of the
con^tational pipeline is significantly higher than that of &e con^utational structures
inplemented to perform the transform and inverse transformation of the data and (2) that
flie confutations performed within the conmutational pipeUne are linear and time
invariant

The final version of tiiis p^er will contain fiirflier details related to the two
contributions outlined here. Details on the structure and depth of the cori^utational
pipeline associated with the proposed SAR processing approach will be provided. This
approach, in terms of estimated power consunption, will be compared with more
traditional approaches that make use of a multicomputer architecture. Also presented will
be measurements and estimates of overall power savings possible by using the proposed
signal activity transformation approach.

116

Reference

[1] Timothy Osmulski, Jeffrey T. Muehring, Brian Veale, Jack M. West, Hongping Li,
Sirirut Vanichayobon, Seok-Hyun Ko, John K. Antonio, and Sudarshaii K. Dhall, "A
Probabilislic Power PredictLon Tool for the Xilinx 4000-Series FPGA," Proceedings of
the 5 International Workshop on Embedded/Distributed HPC Systems and Applications
(EHPC 2000), in Lecture Notes in Computer Science, sponsor: IEEE Computer Society,
CL-UICUH. Mexico. May 2000. pp, ^^6-^83,

117

Appendix J: S. Vanichayobon, Sudarshan K. Dhall, S. Lakshmivarahan, and John K.
Antonio, “Power-speed Trade-off in Parallel Prefix Circuits,” Proceedings of ITComm
2002, High-Performance Pervasive Computing Conference, sponsor: SPIE, Boston, MA,
July/Aug. 2002, pp. 109-120.

118

Power-speed Trade-off in ParaUel Prefix Circuits

S Vanichayobon, Sudar^han K. Dhall, S. Lakshmivarahan, J. K. Antonio
School of Computer Science, University of Oklahoma, Nonnan, OK 73019.

ABSTRACT

r=,n.^tnn.. ^ ^7 algonthms and voltage scaling. The results show that the use of the hne?r ^,..^..»
capacitance assumption provides results that are consistent with those obtained using PSpicnh^ltL? TT
help Identify parallel prefix algorithms with the desirable power consumption with a gieSrouSput "

Keywords: Parallel prefix circuits, power, power-speed trade-ofi^.

1. INTRODUCTION

ine mree most widefy accepted metrics for measuring the quality of a circuit are its area, soe^" "
consumption. Optmiizing area and speed have been considered important for Wt^e but S
consumption has been gaming prominence only recently [1, 5, 10] oTiiToit^f rl^on for ^^

analysis of power-speed trade-off of prefix circuits considered. Finally, Secdon 6 concludes the resultsTtSe papeT

2. PREFIX CIRCUITS - AN OVERVIEW

A prefix computation is the process of taking A^ input values x„;^,...,.,_„., and producing A^ output
values j„>.2,...,3'^_„y;v such that y,=x,, and ^

if.'ff "'Tf <=*?"°!°?'®s ^"d High-Performance Pervasive Computing, Ken Arnold Guanq R Gao
Sud.pto Ghosh, Editors, Proceedings of SPIE Vol. 4863 (2002) ©2002 SPIE • 02^7/SeKls'.OO

119

^i ^,-1 ", -"1 --2--"-^/-i ••^/, fQx2<i<N

where • is an associative binary operation. A prefix circuit with A^ inputs can also be viewed as a layered directed
acychc graph with yV input nodes, N output nodes, and at least ;V-1 operation nodes. An operation node is neither an input
nor an output node. Figure 1 iUustrates the layout and the components of a prefix circuit. The numbers along the left-
hand side of the layout give the depth (level) of the operation nodes on the right.
The tradition^ metrics for measuring the performance of a prefix circuit include its size, depth, fan-in, and fan-out The

T ,°;,n ^'^^ '^''""' '''■^^^^' *' *^ ^°^^ °""'*'^'' "^ operation nodes in the circuit. The depth of a prefix circuit
depth(N), IS the length of the longest path measured in terms of the number of operations along the path in the circuit
fi-om its mput nodes to its output nodes. The circuit depth is related to its computation time, to VLSI implementation a
circuit with smaller depth is generaUy fester than one with greater depth when the fan-out of most nodes in the two
cu-cuits IS simil^ [14]. A prefix circuit is depth-optimal if the circuit has the smaUest depth among all possible circuits
An A^-mput prefix cu-cuit is (sizf, depth)-optimal if size + depth =2N-2 [12]. Every prefix circuits have size-depth
trade-off property [6] - a reduction of the circuit depth is achieved at the cost of an increase in circuit size. The fan-in oi
a prefix circuit is die maximum fan-in of all nodes in the circuit. T\vc fan-out of a prefix circuit is the maximum fen-out
of all nodes m the arcuit. In this study, we are interested in prefix circuits with a fan-in of two and we assume that the
fan-out of the prefix circuit is a function of M In the rest of this section, we give a brief review of the design of some
prefix circuits. For fiill description of these circuits, refer to [8] and [13].

2.1 The Serial Prefix Circuit
The layout of the serial circuit for N inputs, denoted S{N), is iUustrated in Figure 2. Clearly, both size and depth of this
cu-cuit IS N-i The senal prefix circuit has the smallest size amongst all prefix circuits. Moreover, the circuit is (size
depth)-optimal since the sum of its size and depth is 2 A^ - 2.

2.2 ParaUel Prefix Circuits
Figures 3 to 9 give illustrations of divide-and-conquer, Ladner-Fischer (LFo), Ladner-Fischer (LF^), Brent-Kung, Snir
Shih-Lin, and LYD prefix circuits, respectively. Information about their size, depth, and fen-out is given in Table 1 For
complete details, refer to [8]. All these circuits have a depdi 0(lg AO. Snir circuits are a family of circuits whose depth
hes m the range [max (Ig M 21g A^ - 2j, N - 1]. The divide-and-conquer circuit and LFo have fan-out 0(AO, whereas all
the other circuits have a fan-out of 0(lg AO. Ladner and Fischer [6] were the first to discuss the size-depth trade-off in
prefix circuits. They introduced a femily of circuits, LF,(AO, where k{0<k< \\gN'\) refers to the extra depth (above

llgA^l) used to bring about the reduction in size. The circuit size and depth depend on the value ofk. Snir [12] showed
that the sum of depth and size of any prefix circuit with N inputs is bounded below by 2A' - 2. He also introduced an
algonthm to construct the (size, depth)-optimal prefix circuit for any N with the depth in the range
\lgN\<depth{N)<m^(\\gN\2\\gN\-3)may not exist. Lakshmivarahan, Yang, and DhaU [7] were the first to
introduce an algorithm for a (size, depth)-optimal parallel prefix circuit with the depth in the above range. Their design
provides (size, depth)-optimal circuits with a smaller depth than hitherto known. Furthermore, for ^= 9 to 12 17 to 20
and 33, the LYD circuits are not only (size, depth)-optimal, but are also depth-optimal.

2.3 Comparison

Table I provides a comparison of tiie prefix circuits iUustrated in the previous subsection. While the paraUel prefix
cu-cuits have desirable depths, which are O(lgA^), they differ widely in the number of operations perfonned Only four
prefix cu-cuits (i.e., serial, Snir, Shih-Lin, and LYD prefix circuits) are (size, depth)-optimal. The divide-and-conquer
circuit and the LF^ prefix circuit have the shortest depth and the serial circuit has the smallest size.

The size-deptii trade-off does apply to any prefix circuit. For example, the serial prefix circuit perfonns fewest
operations (i.e. smaUest size) compared to the otiiers, but has the longest deptii whUe die divide-and-conquer prefix
circmt has tiie largest size, but has tiie smaUest deptii. Altiiough the Shih-Un prefix circuit and tiie Snir prefix circuit
have smular cn-cuit layouts, Shih-Lin's circuit has a smaller deptii tiian Snir's circuit. AU circuits have unbounded fan-

out except tiie serial circuit tiiat has a constant fan-out of two. The divide-and-conquer prefix circuit and tiie LF^ prefix

circuit have tiie largest fen-out ((A^/2) + l). Brent-Kung's circuit, Shih-Lin's circuit and Snir's circuit have tiie same
fen-out (I Ig A? 1+1), which is smaUer tiian tiiat of tiie LYD circuit (2f"lg A^]- 2).

Proc. SPIE Vol. 4863

120

3. POWER CONSUMPTION IN CIRCUITS

In the previous section we examined size and depth trade-offe of different prefix circuit designs. We want to examine the
power consumption characteristics of these circuits. In this section, the sources of power consumption in circuits are
reviewed and the strategies to estimate the power consimiption of the prefix circuits are presented.

3.1 Sources of Power Consumptions
Presendy, CMOS {Complementary-symmetry Metal-Oxide Semiconductor) technology is the most popular technology
used by the digital IC (Integrated Circuit) industry because of its low power consiunption, its good scalability and its
speed [5, 10, 14]. In CMOS circuits, power consumption is due to the following three types of current flow [14] (a) static
power consumption due to leakage currents (b) dynamic power consumption due to short-ckcuit currents, and (c)
dynamic power consumption due to switching currents from repetitively charging and discharging the parasitic
capacitances at the transistors' gates (Figure 10). In properly designed CMOS circuits, the major portion of the power
consumption is from dynamic switching [5, 10, 14]. As a result, in this study, we focus on the dynamic component due
to the repetitive charging and discharging of the capacitive loads.
The average power consumption in a CMOS gate or module (e.g., an adder) due to switching can be written as [5,14]:

^switching - ^eff^Dof ' (3-1)

where C^ is die effective capacitance switched, Vpo is tiie supply voltage, and / is the clock frequency. C^ has two

components, the switching activity (signal transition activity) per clock cycle, 77^^, and the load capacitance, C^. Thus,

for a given circuit running at a given speed (i.e., C^ and / constant), power consumption is a function of the supply
voltage and switching activity. Therefore, power reduction can be achieved by either operating the circuit at a lower
voltage or by choosing an architecture that reduces the switching activity of the circuit's signals.

Effect of Voltage ScaBng
Due to the quadratic relationship between the supply voltage and the power consumption, lowering supply voltage can
be an effective way to achieve dramatic power savings. However, as the supply voltage is decreased, the circuit delay
generally increases relatively independent of the logic function and style(Figure II). Thus, reducing supply voltage
unfortunately reduces the system throughput. This loss in throughput can be recovered in some cases by applying
architectural techniques to compensate for the additional delay (e.g., using paralleUsm and pipeline). Reference [5]
shows that by changing circuit architecture it is possible to gain significant speed improvements with only a slight
increase in power, hence enabUng some voltage down-scaling while maintaining the throughput

Effect of Switching Activity
The power in CMOS circuits is dissipated when tiie signals in the circuit switch (i.e., change values). As a result, the
amount of switching activity is an indicator of the power consumption. The manner in which the nodes in a circuit are
interconnected can have a strong influence on the overall switching activity [5]. Some architectures induce extta
transition activity at the operation nodes called glitching transitions or dynamic hazards, which consiune extra power.
Glitching is a major problem that increases the effective switching activity, causing a circuit node to undergo several
rapid transitions in a single clock cycle [5, 10].
Figure 12 Dlustrates an example of tiie glitching behavior for a chain of eight NAND gates [10] by using a PSpice®
simulation [3]. In the simulation, all bits of tiie first input were set to logic 'one' and all bits of second input transition
from logic 'zero' to 'one'. For an ideal circuit without propagation delays, the resultant outputs V0UT2, 4, 6 and 8
would stay logic 'one' all the time. However, due to tiie presence of delays, these outputs switch to low temporarily.
This glitching causes extra power to be consumed. Outputs VOUT1, 3, 5 and 7 do not glitch; tiiey just have some
propagation delay. It is noted tiiat tiie degree of gUtching depends on the switching pattern of tiie input signals [10].
To reduce glitching activity, tiie depth of the signal paths in the circuit should be balanced. Figure 13 gives an
illustration of two different circuit architectures of a 4-input adder. We assiune that all primary inputs (A, B, C, and D)

arrive at the time f^ and tiie unplementation is non-pipelined. While tiie adder in Figure 13a makes one transition by

computing A+B, the second adder also makes one transition based on C and the previous (initial) value of A+B. After

Proc. SPIE Vol. 4863

121

the correct value of A+B has propagated through the first adder at time say tQ+t , the second adder re-evaluates

(A+B)+C, which is complete at time ?Q + 2t . Thus, there is a second transition at the second adder. Similarly, there

will be three transitions at the third adder. With a path-balancing approach of Figure 13(b), while the first and second
adders make one transition the third adder will make only two transitions to produce the same output as in Figure 13(a).
In [5], the "total switched capacitance" of the circuit layout in Figures 13(a) and 13(b) has been simulated by using a
switch-level simulator over random input patterns. The results show that the switched capacitance of the circuit layout in
Figure 13(a) is larger than that of the layout in Figure 13(b) by a factor of 1.5 for a four input addition, and 2.5 for an
eight input addition. Hence, increasing circuit depth generally increases the total switched capacitance due to glitching
and thus increases power consumption [5]. As a consequence, the amount of transition activity (switching activity) for a

layered and non-pipehned circuit can be a fiinction of depth d and the number of nodes at each level /, W-, as [5]
d

HiWi . (3.2)
1=1

From this, h follows that in the worst case estimate for the switching activity of such a circuit can grow according to

0{d ') , assuming a constant number of nodes at each level.

From the previous discussion and the example of Figure 13, we have seen that diflferent circuit architecmres for
performing the same fiinction can consume different amounts of power. Therefore, the implementation of the various
prefix circuits in an application will have different power consumption as well. However, in the prefix circuits, we
cannot say with certainty tiiat the circuit with the longer depth will consume more power tiian one with shorter depth.
The reason is that both depth and the number of operation nodes among the candidate prefix circuits differ. In prefix
circuits, when the depth decreases, the number of operation nodes (i.e., size) generally increases and vice versa. This is
known as the size-depth trade-off [6, 8]. As a result, the switching activity in a prefix circuit not only depends on its
logic depth but also on the number of operation nodes at each level. The circuit with shorter depth and more nodes might
have more switching activity than the one with longer depth and fewer nodes.

3.2 Power Consumption and Fan-out
Besides the switching activity at an operation node, the node's fan-out also has an efiect on power consumption in a
circuit design in VLSI [4, 14]: the larger the fan-out, the more power the circuit consumes because there are more
signals. For example, by using the PSpice over random input patterns, the power consumed by a 2-input XOR gate is
dependent on the fan-out and the relationship is linear (Figure 14). Hence, fan-out should be taken into accoimt when a
power consumption estimate is made for the prefix circuit.

4. POWER MODELING OF PREFIX CIRCUITS

In this section, we will analyze switching activity and fan-out for each prefix circuit considered. We then use this to
further estimate and investigate the power-speed trade-off between various types of prefix circuits.
Having seen the various sources of power consumption in general circuits we now focus on analytical model under
linear output capacitance assumption for predicting the average power consimiption of a prefix circuit. As mentioned
previously, die signal switching activity has a major influence on the power consumption. Therefore, the switching
activity will be used as a basis to determine power consumption of prefix circuits. Further, as mentioned in Section 3.2,
the power consumption of an operation node is a linear fiinction of fan-out [4]. Therefore, to take into account the effect
of fan-out on the output load cqiacitance of an operation node, we assimie that die load capacitance of a node with fan-

out k is equal to CQ+C(k-l), where Q is the load capacitance of a node with fen-out 1, and C is the load
capacitance for each additional fen-out (Figiu-e 15).
The effective circuit capacitance of a prefix circuit, cap^{N), is the eflfective load capacitance of all nodes in the

circuit. As defined here, the effective circuit capacitance depends on input signal patterns and the effects of signal
gUtching. Thus if a node output experiences two fi-ansitions due to glitching, its effective capacitance is twice that of the
physical capacitance. Because the degree of glitching depends on input signal patterns, we consider derivations of the
worst case scenario in which ghtching at the nodes are assumed to be the maxmium possible. By scaling the effective

circuit capacitance by the circuit clock irequency and V^p, we arrive at our power estimate

Proc. SPIE Vol. 4863

122

P = cap^(NWlof. (4.1)

The capacitance evaluation for various circuits according to our model is made in two steps. As a first step, in Section
4.1, we assume that load capacitance for each operation node is independent of the fan-out, i.e., the load capacitance is
constant Cg. In the second step we first compute the residual circuit by deleting one output of each operation node widi
fen-out > 1. We then compute the load capacitance of the residual circuit assuming that the load capacitance of each

node is C , independent of the fan-out. This step is repeated k -1 times where k is the fan-out of the given circuit. This
step is performed in Section 4.2. The effective circuit capacitance is the sum of the values obtauied in step 1 and step 2.
In the foUowing, we compute the effective circuit capacitance for the divide-and-conquer prefix circuit. The effective
circuit capacitance for the other prefix circuits can be computed similarly (for details refer to [13]).

4.1 Step 1 - The Constant Output Capacitance
hi this step, we assume that the physical output capacitance of each operation node is constant. Let Kcap^ iN)he the

effective circuit cjq)acitance under the constant output capacitance assumption, depth{N) be the depth of the circuit, w.

be die number of operation nodes in the circuit at level i, and C Q as the assumed constant load capacitance of one node.
fdepth(N) \

Then fix)m Eq. 3.2, Kcap^(N) = Y^'^i Q •
V '■=! J

4.1.1. The Divide-and-Conquer Parallel Prefix Circuit

Let N = 2". From the layout of the divide-and-conquer prefix circuit, DC(N), in Figure 3, DC(N) is built fi-om

VwoDC(N 12) circuits and by connecting output \:N 12 fi-om flie first DC(N/2) to each of the output of the
second DCiN 12) at level depth{N / 2) +1 = \g(N l2) + l = \gN . Thus,

Kcap,ff{N) = i;2Kcap^^{NI2) + {NI2)\gN)-Ca, with Kcap^(2) = hCQ.

The first part of Kcap^^iN) is the constant output capacitance fi-om the two circuits with (A^/2) inputs while die

second part is the capacitance fi-om the last level of DC{N). Solving this recurrence, we get

Kcap^ (N)={N/ 4)((lg ^) ^ + Ig A^jc^

Kcap^(N) for die other prefix circuits can be computed sunilarly, altiiough they are generally more chaUenging

because w,. is not always constant (for details refer to [13]).

4.2. Step2 - Capacitance of Residual Circuit

We have assumed that a node with fen-out A: > 1, has a physical output capacitance given as Q + (/t - 1)C'. However,
the capacitances computed in Section 4.1 for various circuits are based on die assumption that die capacitance of each

node is CQ irrespective of the fen-out of die node. We still need to account for the component (k - l)C for a node witii
fan-out k, fc > 1. To get tiiis value, we introduce the concept of die residual circuit. The residual circuit of a prefix circuit
is die circuit obtained by eliminating one of die fan-outs fi-om each operation node of die given prefiix cu-cuit. For
example. Figure 16 shows die residual circuit of die divide-and-conquer prefix drcuit. This residual circuit is die result
of removing one of die fan-outs fi-om each operation node of die circuit in Figure 3. We can compute die capacitance of

tills residual cu-cuit, Rcap^(N), by assuming constant output capacitance (C) for aU operation nodes. We dien

construct die residual circuit of die current residual circuit by removing one fan-out fi-om each operation node and
compute its residual output capacitance. We continue accumulating die capacitances after every reduction until there are
no more fan-outs to remove. Thus, die effective cu-cuit capacitance of die prefix circuit using die linear output
capacitance assumption is given by

cap^ (N) = Kcap,ff {N)C^ + Rcap^ {N)C.

Proc. SPIE Vol. 4863

123

4.2.1. The Divide-and-Conquer Parallel Prefix Circuit
From the layout of the divide-and-conquer prefix circuit in Figure 3, an operation node at level depth(N/2)has the

maximum fen-out, which is ((A'/2) + l). Alter removing the vertical fen-outs, the residual circuit is shown in Figure 16.

The operation node of the residual circuit at level depth{N 12) has the maximum fen-out, which is {Nil).

Let N = 2". The capacitance of the residual circuit is as follows:

Rcap^(N) = {2Rcap^iN/2) + (N/2)\g(N/2))c', witii Rcap^(2)=0.

The first part of Rcap^g (N) is the residual output capacitance of the two circuits with {N12) inputs while the second

part is the residual output capacitance of the last node in the fist residual circuit.
Solving the recurrence, we get

Rcap^(N) = {2Rcap,ff{Nl2) + iNl2)\g{NI2))c' =(7V/4)((lg7V)- -IgAfjc'.

Thus, the effective circuit capacitance for the divide-and-conquer prefix circuit is as follows.

ca;.,^(Af)-{;A^/4)((lgA^)-+lgAr)]Co+}(A^/4)((lg7V)--Igivjjc'.

To summarize, the divide-and-conquer prefix circuit has O(NlgN) size, OQgN) depth, and 0(N(lgN)') effective
circuit capacitance. Table 2 provides a comparison of the effective circuit capacitance of die prefix circuits described in

Section 2. The serial prefix circuit has the largest effective circuit capacitance (0(N ")). All parallel prefix circuits have

O(NlgN) effective circuit capacitance, except the divide-and-conquer prefix circuit and the LFQ prefix circuit whose

values are 0(N{lgN)-).

5. SIMULATION STUDIES

In Section 4, the power modeling for various prefix circuits was proposed. This section deals with the circuit simulations
(using PSpice) we conducted to investigate the prefix circuits' behavior to match witii the prediction of the effective
circuit capacitance. The degrees of freedom studied include different prefix circuit designs and voltage scaling. Voltage
scaling is used because power consumption is a quadratic function of the voltage.

Theoretical Results
Figures 18, 20, and 22 give estimated delay, power consumption, and power-delay product obtained fi'om our theoretical
model in Section 4. Figure 18 is the result obtained by assuming die circuits' delay to be proportional to the circuits'
depth and applying the normalized delay from Figure 17 in order to take the effect of the supply voltage on the delay.

The power consumption is estimated using the formula of Eq. 4.1. For this study we used CQ = 0.9 and C = 0.3 [11].
For example, at a supply voltage of 2.8V., the normalized power consumed by the divide-and-conquer prefix circuit is:

Pinormalized) = cap^^ (NW}^ f = (2,496C' \2.%f f/(Cf) = 19,569.

The estimated power consumption of parallel prefix circuits described in Section 2 is shown in Figure 20. According to
the figure, the divide-and-conquer prefix circuit consumes the most power. Figure 22 illustrates the power-delay product.
The Brent-Kung prefix circuit has the highest power-delay product whUe the divide-and-conquer and the LFo prefix
circuits have ttie power-delay product lower than diat of the Brent-Kung prefix cucuit, the Smr prefix circuit, the Shih-
Lin prefix circuit and the LYD prefix circuit.
Table 3 shows the estimated power consumption of the different prefix circuits at fixed and reduced supply voltage when
N = 64. When the supply voltage is fixed at 2.8V, amongst parallel prefix circuits considered, die divide-and-conquer
prefix circixit consumes more power than other circuits. To lower power consumption by reducmg the supply voltage, let
us assume a fixed acceptable delay. Further, assume tiiat delay is proportional to depth and that a delay proportional to a
depdi of 10 with Vpp = 2.8 volts is acceptable. Thus the voltage of the Brent-Kung and Snir circuits cannot be lowered,
and the delay of the serial circuits is not acceptable. Thus, the voltages of five prefix circuits (i.e., the divide-and-
conquer prefix circuit, the LFo prefix circuit, die LFi prefix circuit, Ae Shih-Lin prefix circuit, and die LYD prefix
circuit) can be dropped from 2.8 V and still achieve die acceptable delay. For example, because the delay for the divide-
and-conquer prefix circuit is proportional to 6 at 2.8V, the voltage can be dropped fi-om 2.8V to 1.48V. The operating

Proc. SPIE Vol. 4863

124

frequency can be decreased by a factor of 0.6. Thus the normalized power consumed by the divide-and-conquer prefix
circuit is:

P(normalized) = cap^ {NWjdf = (2A96C'\lASf {0.6 f)/(C'f) = 3,280.

After scaling the supply voltage, there is a power improvement in the circuits havmg depth shorter than 10. Among these
circuits, the LFQ prefix circuit has a major reduction in power due to its shortest deptii.

Simulation Results
PSpice simulation was carried out on different parallel prefix circuits with 64 inputs using XOR gate as an associative
binary operation. Figures 19, 21, and 23 give delay, power consumption, and power-delay product obtained through the
simulation over random inputs. As expected, amongst the parallel prefix circuits considered, tiie divide-and-conquer
prefix circuit copsumes tiie most power. As the supply voltage is reduced, power consumption is also reduced. Also,
though the delay of the divide-and-conquer prefix circuit is the least for some values of the voltage supply, it is not so for
lower voltages. This may be due to its very high fen-out compared to others {(XN) vs 0(lg A^)). From tiie point of view
of tiie power-delay product metric, tiie LYD prefix circuit is found to be tiie best across the entire voltage scaling. This
means tiiat tiie circuit provides tiie best trade-off between power and delay. Anotiier result of tiie simulation studies
shows that tiie power-delay product of the divide-and-conquer circuit is the highest, followed by tiiat of the LFo circuit.
This is at variance witii our model prediction and may be due to tiie feet tiiat tiiese circuits have a very high fan-out (see
Table I for fan-out). In our tiieoretical results, we do not take into account tiie effect of fan-out on tiie delay.
Also according to tiie simulation, with voltage-scaling technique, the LYD prefix circuit has tiie least power
consumption compared to oflier circuits. For example, let us assume tiie maximum acceptable delay is 6.4 |iis. From
Figures 19 and 21, to achieve tiiis time-delay, flie supply voltage of the divide-and-conquer, LFQ. LFi, Shih-Lin, and
LYD prefix circuits can be 1.8 V, 1.78V, 1.78 V, 2V, and 1.8V, respectively. Therefore, tiie powers tiiat the divide-and-
conquer, LFo, LFi, Shih-Un, and LYD prefix circuits consume are 2.25, 1.94, 1.59, 1.64, and 1.44 W, respectively. This
shows that power reduction of about 1.6 times can be obtained without speed loss by using the LYD prefix circuit
compared with using tiie divide-and-conquer prefix cu-cuit by using appropriately chosen supply voltage.

6. CONCLUSIONS

The power consumption and tiie power-delay product of seven parallel prefix circuits were compared. We have shown
tiiat the use of our effective circuit capacitance provides results that are accurate when compared to PSpice simulations.
We have also shown tiiat paralleUsm at a certain level coupled with the use of low supply voltage can be used to reduce
die power consumption in tiie circuit witiiout tiiroughput loss. The main discrepancy between tiie model and tiie
simulation is tiie power-delay product metric. This may be due to the fact tiiat the fen-out of tiie divide-and-conquer and
tiie LFo prefix circuit is very high as compared to other circuits. In this analysis, we have assumed that the delay is
uniquely determined by the depth of the circuit. The results of the simulation of the divide-and-conquer drcuit in
particular indicate that large fan-out in addition to contributing to more power may also indirectly affect the delay.

ACKNOWLEDGEMENTS

This work was supported by DARPA under contract No. F30602-97-2-0297.

REFERENCES

1. C. Belady, "Cooling and Power Consideration for Semiconductors Into the Next Century", Proceedings of the 2001
International Symposium on Low Power Electronics and Design, pp.100-105,2001.

2. R. P. Brent, and H. T. Kung, "A Regular Layout for ParaUel Adders", IEEE Transactions on Computers, Vol. 31,
pp. 260-264,1982.

3. Cadence Design Systems, Inc., PSpice User's Guide Manual, Version 9.2, San Jose, CA, January 2000.
4. T. K. CaUaway, A rea, Delay, and Power Modeling of CMOS Adder and Multipliers, Ph.D. Dissertation, The

University of Texas at Austin, 1996.
5. A. P. Chandrakasan, and R. W. Brodersen, Power Digital CMOS Design. Kluwer Academic Publishers, Norwell,

MA. 1995.

Proc. SPIE Vol. 4863

125

6. R. E. Ladner, and M. J. Fischer, "Parallel Prefix Computation", Journal of ACM, Vol. 27, pp. 831-838, 1980.
7. S Lakshmivarahan, C. M. Yang, and S. K. Dhall, "Optimal Parallel Prefix Circuits with {size, depth) = 2N-2

and [log N~\<depth<[2logN~\-3 ", Proceedings of the International Conference on Parallel Processing, pp.
58-65,1987.

8. S. Lakshmivarahan, and S. K. Dhall, Parallel Computing Using the Prefix Problem. Oxford University Press New
York, NY, 1994.

9. Y. M. Un, and C. C. Shih, "A New Class of Depth-Size Optimal Parallel Prefix Circuits", Journal of
Supercomputing, Vol. 14, pp. 39-52,1999.

10. J. M. Rabaey, A. Chandrakasan, and B. NikoUc, "Chapter 6: Designing Combinational Logic Gates in CMOS",
Digital Integrated Circuits A Design Perspective, early draft of the 2nd edition, April 2001,
http://bwrc.eecs.berkeley.edu/Classes/IcBook/2ndEdition.html.

11. M. Smith, Application-Specific Integrated Circuits, Addison Wesley, Menlo Park, CA, 1997.
12. M.Snir, "Depth-Size Tradeoffs for ParaUel Prefix Computation", yo«ma/o/A/gon?/j7M5, Vol. 17,pp. 185-201,

1986.
13. S. Vanichayobon, Power-speed Trade-off in Parallel Prefix Circuits, Ph.D. Dissertation, School of Computer

Science, The University of Oklahoma, 2002.
14. N. H. E. Weste, and K. Eshraghian, Principles of CMOS VLSI Design: A System Perspective, Addison-Wesley, MA,

Figures

Input node.

level

1

2--
3-

-^ JCt JC-f JC'i x^

^^
output node

operation node

>'l 3^2 Js 3^4

Figure 1: An iUustration of the prefix circuit's layout. Figure 2: An illustration of the serial prefix circuit, S{N).

'{%

1 2 f !L,,^,._ N
- 2 2

iNPirr

-ai) <m

1 1 2 ^ I

\

2 2

N
- + 11:

N
—+2 1
2

A cxrrpui

Figure 3: An illustration of the divide-and-conquer prefix Figure 4: An iUustration of the Ladner-Fischer parallel
'^"''^"''' prefix circuit when ^ = 0, LFd(N), derived from [6].

Proc. SPIE Vol. 4863

126

127

-j—- _j IV0UT41/ Xr ■ ̂̂-X V^
^^' HJ^

(a) Chain Model (b) Tree Model

Figure 13: An illustration of extra transition activity, derived from [5].

Figure 12: An illustration of the glitching behavior
of a chain of eight NAND gates, derived from [10].

Fan-out Number

1 i'igure 14: Effect of fan-out on power consumption
ofa2-inputXORgate.

N N N
- + 1- + 2 N INPUT

KT)

N' . N ',, li
1 1:2 i:il i,£L^n:^^2 1:A' OUTPUT

2 2 2

Figure 16: The residual circuit of the divide-andK;onquer
jrefix circuit. DC(N), shown in solid lines.

Figure 18: Estimated delay of parallel prefix circuits when A'=64.

118 Proc. SPIE Vol. 4863

Figure 19: Delay of the 64-bit XOR paraUel prefix

128

20000-

18000-

S. 16000-

^ 12000.

1 lOOOO.

1 °°°°"

♦ -e-BK

g4.0

.2 ^^

1 3.0

|2.8

1.5.

" ,♦ -"-BK

.« / -T-LYD

1.2 1.4 1.6 1.8 2.0 2.2 ZA 2.6 2.8 ao 3.2

Supply Voltage (V) Supply Voltage (V)

Figure 20: Estimated power consumption of parallel prefix V -,, T> '■—z :

circuits when N=64.
i igui c .4,i. r uwci toiisumpuon or me o^-Dit AUK parallel
prefix circuits, obtained through PSpice simulation.

1 120000.

flMOOO-

1 eoooo-

1 -♦-Snir
20-

|l4.

-»-BK
/ —•—Snr

Supply Voltage (V)
1.2 1:4 ,:6 ila 2:0 2:2 2:4 2:6 ■ 2:8 ■ 3^0 ■ 3:2

Figure 22: Est imatednowRr-dplavnmfliirt nf nnmlW iirof;.,r
circuits when A* -64 ''igwre^-'Sfower-aeiay product ot the 64-bitXOR parallel

prefix circuits, obtained through PSpice simulation.

Table 1: A Comparison of the six prefix circuits illustrated in Section 2, when N=2".

Prefix Circuit Size Depth Fan-out (size, depth)-
optimal

Serial N-\ N-\ 2 Yes

Divide-and-
Conquer

(N/2)]gN IgiV W2)-l-l No
depth-optimal

- LFo 4N-F(5 + lgN) + l
IgA^ + fc {N/2'*') + k

No
LF,
whenO<«:<lg/V-2

2iV(l + (l/2*))-F(5 + lg^'-^•)-/fc + l

LFu
vAent>lgA'-2

2N-lgN-2 2\gN-2 IgN + l

Brent-Kung 2N-lgN-2 2\gN-2 IgN + l
No

-

Snir 2N-2-depth maxdgiv, 2IgAf-2)
<depth<N-\

lgAf+1
Yes

LYD 2N-2-depth 2lgN-6<depth< aigTV-S 21gA'-2
Yes - Shih-Lin 2N-2-depth 2lgN-5<depth<2lgN-3 IgA'-l-l
Yes

Proc. SPIE Vol. 4863 119

129

Table 2: Comparison of effective circuit capacitance of prefix circuits

Prefk Circuit

Divide-and-Conquer

Brent-Kung {l + |;Vlg^-i[2^ + (lgA.)^+lg^]}c„ + {/„:^,g^]_ir3^^(,g^>.,,^|jU

|j(agAf)=+lgA')jc„ + |^((lgA')=-lgAf)|c<Z.Fj<|l + ^A'lgA'-^[2A' + (lgA')-+lgAf]|(:

{{^-^^sfj-\h.o^^y.A

I l + |A',(lgiV,)j-[i[2Ar,+(lgA',)=+(lgA',)]j+ Af,r(lgA',)l-r(lgJV,)]+f'M^l U +

[{l + f Igf)4(3^. +Ogf)= +lg^]l+ [hN,jN, -i}^i(N; -3N,_^2)\\c-

il + ljV.lgiV, - ^[2N,+asNy-+lgN,] +riM!l + 2rigiv,T+i[MLl + il +

•'V3+i)+% + AfJigA',l+Ar3N,+i—^ ic

Tabk 3: Estimated power consumption based on Eq. 3 fw various pceGx circuits for A'^ = 64, Co= 3C'

130

Appendix K: Jack M. West, Hongping Li, Sirirut Vanichayobon, Jeffrey T. Muehring,
John K. Antonio, and Sudarshan K. Dhall, “A Hybrid FPGA/DSP/GPP Prototype
Architecture for SAR and STAP,” Proceedings of the Fourth Annual High Performance
Embedded Computing Workshop, sponsors: U.S. Navy and Defense Advanced Research
Projects Agency (DARPA), MIT Lincoln Laboratory Publications, Group 18, Lexington,
MA, Sep. 2000, pp. 29-30.

131

132

data connnmiication (through the PCI bus) between the PCs and the FPGA subsystems.
The data conmiunication among all FPGA boards is through two types of 36-bit wide
connectors, one called systolic and one called SIMD.

The data communication between the front-end FPGA subsystem (F) and the
DSP/GPP subsystem is a custom interface developed using the systolic connector from
Ann^oHs and the RIN-T input device from Mercury. Similarly, the data communication
between the DSP/GPP subsystem and the back-end FPGA subsystem (B) is through a
custom interface developed using the ROUT-T output device from Mercury and the
systolic connector from Annapolis.

Figures 2 and 3 illustrate how the m^or coii:q)utational coii:5)onents of the SAR and
STAP applications can be m^ped onto the prototype s^tem. A candidate moping is
defined by assigning the coii:5)utations of each m^or coii:q)onent to one or both of the
symbols shown in each block (which correspond to one of the FPGA or DSP/GPP
subsystems). Using SAR to illustrate, one moping would be to perform all of the range
con:q)ression on the front-end FPGA subsystem (F) and then perform all azimuth
processing on the DSP/GPP subsystem. Another possible mapping is defined by using the
FPGA subsystems and the DSP/GPP for both con:q)onents of con:q)utation. It is also
possible to use only the DSP/GPP subs^tem for both con:q)onents of corrq)utations.

The SAR studies were designed by ad^ting the RASSP (R^id Prototyping of
Apphcation Specific Signal Processors) benchmark developed originally by Lincoln
Laboratory at MIT. The benchmark, which was originally iirq)lemented in serial C code,
was first modified to execute on the parallel DSP/GPP subsystem. A data-streaming
corrq)onent was also added so that input data can be sent continuously from the data
source of the prototype system. Core con:q)utations from the range con:5)ression and
azimuth processing components were implemented for the FPGA subsystems.

The STAP studies were designed by adapting the RT_STAP (Real Time STAP)
benchmark developed originally at MITRE. This benchmark was aheady in^lemented
for parallel execution on a PowerPC-based Mercury system. This irr^lementation was
expanded to also enable execution on SHARC compute nodes. The same basic data
streaming component that was developed for SAR was also adapted to enable the STAP
input data to be sent continuously from the data source. Finally, core computations from
the range compression and weight confutation con^onents from the STAP processing
flow were iiiplemented for the FPGA subsystems.

The size, weight, and power utilizations of various mappings and problem instances
are under investigation. Initial indications are that heterogeneous configurations, which
utilize two or more hardware technologies of the prototype system, are preferred over
homogeneous configurations.

133

\l20MBIsizZ
Annapolis

System
(F)

Custoin

120 MB/s(s Mercury
System

liaOMBfseeJ

Annapolis |
System i20MB/!(=

(B) !

PE PE

FPGA
Subsystem

DSP/GPP
Subsystem

FPGA
Subsystem

Figure 1. Overview of the architecture of the prototype system.

^

A
Azimuth

Processing
 ^

Figure 2. Major conputational conponents of SAR processing flow.

^ ^

Figure 3. Major computational components of STAP processing flow.

